Towards Three-Dimensional Conformal Probability

Abdelmalek Abdesselam
Department of Mathematics, University of Virginia

Main reference: arXiv:1511.03180[math.PR]

Conference in honor of Vincent Rivasseau
Paris, November 25, 2015
© The Brydges-Mitter-Scoppola (BMS) model in 3D

- The p-adic hierarchical model

1) Heuristic definition of the BMS model

1) Heuristic definition of the BMS model

The BMS model is the family of probability measures on $S^{\prime}\left(\mathbb{R}^{3}\right)$ formally given by

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle-\int_{\mathbb{R}^{3}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{3} x\right) D \phi
$$

with fractional power of Laplacian $\alpha=\frac{3+\epsilon}{4}, 0<\epsilon \ll 1$.

1) Heuristic definition of the BMS model

The BMS model is the family of probability measures on $S^{\prime}\left(\mathbb{R}^{3}\right)$ formally given by

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle-\int_{\mathbb{R}^{3}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{3} x\right) D \phi
$$

with fractional power of Laplacian $\alpha=\frac{3+\epsilon}{4}, 0<\epsilon \ll 1$.
Main focus: the scale invariant theory corresponding to a nontrivial RG fixed point (BMS in CMP 2003).

1) Heuristic definition of the BMS model

The BMS model is the family of probability measures on $S^{\prime}\left(\mathbb{R}^{3}\right)$ formally given by

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle-\int_{\mathbb{R}^{3}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{3} x\right) D \phi
$$

with fractional power of Laplacian $\alpha=\frac{3+\epsilon}{4}, 0<\epsilon \ll 1$.
Main focus: the scale invariant theory corresponding to a nontrivial RG fixed point (BMS in CMP 2003).

Should correspond to critical scaling limit of long-range three-dimensional Ising model with ferromagnetic interactions $J_{\mathbf{x}, \mathbf{y}} \sim|\mathbf{x}-\mathbf{y}|^{-(d+\sigma)}, d=3, \sigma=\frac{3+\epsilon}{2}$.

2) Precise definition with Fourier cut-offs

2) Precise definition with Fourier cut-offs

Define continuous bilinear form $C_{-\infty}$ on $S\left(\mathbb{R}^{3}\right)$ by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$.

2) Precise definition with Fourier cut-offs

Define continuous bilinear form $C_{-\infty}$ on $S\left(\mathbb{R}^{3}\right)$ by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Introduce mollifier ρ_{UV} : smooth function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, $\int \rho_{\mathrm{UV}}=1$.

2) Precise definition with Fourier cut-offs

Define continuous bilinear form $C_{-\infty}$ on $S\left(\mathbb{R}^{3}\right)$ by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Introduce mollifier ρ_{UV} : smooth function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, $\int \rho_{\mathrm{UV}}=1$.
Introduce volume cut-off function $\rho_{\text {IR }}$: smooth function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, nonnegative, equal to 1 in neighborhood of origin.

2) Precise definition with Fourier cut-offs

Define continuous bilinear form $C_{-\infty}$ on $S\left(\mathbb{R}^{3}\right)$ by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Introduce mollifier ρ_{UV} : smooth function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, $\int \rho_{\mathrm{UV}}=1$.
Introduce volume cut-off function ρ_{IR} : smooth function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, nonnegative, equal to 1 in neighborhood of origin.

Fix rescaling ratio $L>1$, integer.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty)$, let $\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty$), let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}(\operatorname{IR}$ cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty$), let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}$ (IR cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.
Let $\mu_{C_{r}}$ be the law of $\phi * \rho_{\mathrm{UV}, r}$ for random $\phi \in S^{\prime}\left(\mathbb{R}^{3}\right)$ with law $C_{-\infty}$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty)$, let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}$ (IR cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.
Let $\mu_{C_{r}}$ be the law of $\phi * \rho_{\mathrm{UV}, r}$ for random $\phi \in S^{\prime}\left(\mathbb{R}^{3}\right)$ with law $C_{-\infty}$.

Given bare ansatz $\left(g_{r}, \mu_{r}\right)_{r \in \mathbb{Z}}$, one has well defined probability measures $d \nu_{r, s}(\phi)$ whose Radon-Nikodym derivative with respect to $d \mu_{C_{r}}(\phi)$ is proportional to

$$
\exp \left(-\int_{\mathbb{R}^{3}} \rho_{\mathrm{IR}, s}(x)\left\{g_{r}: \phi^{4}:(x)+\mu_{r}: \phi^{2}:(x)\right\} d^{3} x\right)
$$

with Wick ordering relative to $\mu_{C_{r}}$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty$), let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}$ (IR cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.
Let $\mu_{C_{r}}$ be the law of $\phi * \rho_{\mathrm{UV}, r}$ for random $\phi \in S^{\prime}\left(\mathbb{R}^{3}\right)$ with law $C_{-\infty}$.

Given bare ansatz $\left(g_{r}, \mu_{r}\right)_{r \in \mathbb{Z}}$, one has well defined probability measures $d \nu_{r, s}(\phi)$ whose Radon-Nikodym derivative with respect to $d \mu_{C_{r}}(\phi)$ is proportional to

$$
\exp \left(-\int_{\mathbb{R}^{3}} \rho_{\mathrm{IR}, s}(x)\left\{g_{r}: \phi^{4}:(x)+\mu_{r}: \phi^{2}:(x)\right\} d^{3} x\right)
$$

with Wick ordering relative to $\mu_{C_{r}}$.
The scale invariant BMS measure should be the weak limit $\nu_{\phi}=\lim _{r \rightarrow-\infty} \lim _{s \rightarrow \infty} \nu_{r, s}$ for a well chosen bare ansatz which mimics the scaling limit of a critical theory on the unit lattice.

Conjecture 1:

Set $[\phi]=\frac{3-\epsilon}{4}$ for ϵ positive and small. Then there exists a nonempty interval $I \subset(0, \infty)$ and a function $\mu_{\mathrm{c}}: I \rightarrow \mathbb{R}$ such that for all $g \in I$, if one sets $g_{r}=L^{-r(3-4[\phi])} g$ and $\mu_{r}=L^{-r(3-2[\phi])} \mu_{c}(g)$, the weak limit ν_{ϕ} exists and is non-Gaussian, translation-invariant, $O(3)$-invariant, OS positive, and scale-invariant with exponent $[\phi]$, i.e., $\lambda^{[d]} \phi(\lambda \cdot) \stackrel{d d}{=} \phi(\cdot)$ for all $\lambda>0$.
Moreover, this limit is independent of L and $g \in I$ as well as the choice of functions $\rho_{\mathrm{UV}}, \rho_{\mathrm{IR}}$.

Conjecture 1:

Set $[\phi]=\frac{3-\epsilon}{4}$ for ϵ positive and small.
Then there exists a nonempty interval $I \subset(0, \infty)$ and a function $\mu_{\mathrm{c}}: I \rightarrow \mathbb{R}$ such that for all $g \in I$, if one sets $g_{r}=L^{-r(3-4[\phi])} g$ and $\mu_{r}=L^{-r(3-2[\phi])} \mu_{\mathrm{c}}(g)$, the weak limit ν_{ϕ} exists and is non-Gaussian, translation-invariant, $O(3)$-invariant, OS positive, and scale-invariant with exponent $[\phi]$, i.e., $\lambda^{[d]} \phi(\lambda \cdot) \stackrel{d d}{=} \phi(\cdot)$ for all $\lambda>0$.
Moreover, this limit is independent of L and $g \in I$ as well as the choice of functions $\rho_{\mathrm{UV}}, \rho_{\mathrm{IR}}$.

Measure constructed on finite torus by Mitter (~ 2004) using fixed point obtained by BMS, CMP 2003.
3) Some definitions

3) Some definitions

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has the finite moment of all orders (MAO) property if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.

3) Some definitions

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has the finite moment of all orders (MAO) property if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.
The moments

$$
S_{n}\left(f_{1}, \ldots, f_{n}\right)=\left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle=\int_{S^{\prime}\left(\mathbb{R}^{3}\right)} \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) d \mu(\phi)
$$

are automatically continuous n-linear forms (Fernique 1967).

3) Some definitions

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has the finite moment of all orders (MAO) property if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.
The moments

$$
S_{n}\left(f_{1}, \ldots, f_{n}\right)=\left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle=\int_{S^{\prime}\left(\mathbb{R}^{3}\right)} \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) d \mu(\phi)
$$

are automatically continuous n-linear forms (Fernique 1967).
A probability measure μ is determined by correlations (DC) if it is MAO and the only MAO measure with the same sequence of moments S_{n} as μ is μ itself.

3) Some definitions

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has the finite moment of all orders (MAO) property if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.
The moments

$$
S_{n}\left(f_{1}, \ldots, f_{n}\right)=\left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle=\int_{S^{\prime}\left(\mathbb{R}^{3}\right)} \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) d \mu(\phi)
$$

are automatically continuous n-linear forms (Fernique 1967).
A probability measure μ is determined by correlations (DC) if it is MAO and the only MAO measure with the same sequence of moments S_{n} as μ is μ itself.
By the nuclear theorem S_{n} can be seen as an element of $S^{\prime}\left(\mathbb{R}^{3 n}\right)$.

A DC measure μ is determined by pointwise correlations (DPC) if

A DC measure μ is determined by pointwise correlations
(DPC) if
(1) For all $n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support in the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the smooth pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.

A DC measure μ is determined by pointwise correlations (DPC) if
(1) For all $n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support in the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the smooth pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.
(2) The pointwise correlations are $L^{1, \text { loc }}$ on the big diagonal.

A DC measure μ is determined by pointwise correlations (DPC) if
(1) For all $n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support in the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the smooth pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.
(2) The pointwise correlations are $L^{1, \text { loc }}$ on the big diagonal.
(3) For all n, and all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{R}^{3}\right)$,

$$
\begin{aligned}
& \left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle f\left(x_{1}\right) \cdots f\left(x_{n}\right) d^{3} x_{1} \cdots d^{3} x_{n} .
\end{aligned}
$$

A DC measure μ is determined by pointwise correlations (DPC) if
(1) For all $n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support in the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the smooth pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.
(2) The pointwise correlations are $L^{1, l o c}$ on the big diagonal.
(3) For all n, and all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{R}^{3}\right)$,

$$
\begin{aligned}
& \left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\mathbb{R}^{3 n} \backslash \text { Diag }_{n}}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle f\left(x_{1}\right) \cdots f\left(x_{n}\right) d^{3} x_{1} \cdots d^{3} x_{n} .
\end{aligned}
$$

Conjecture 2:
ν_{ϕ} is DPC.
4) Conformal invariance

4) Conformal invariance

Conjecture 3:

The pointwise correlations of ν_{ϕ} satisfy

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\left[\frac{[0]}{3}\right.}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

for all $f \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ and all collections of distinct points in $\mathbb{R}^{3} \backslash\left\{f^{-1}(\infty)\right\}$.

4) Conformal invariance

Conjecture 3:

The pointwise correlations of ν_{ϕ} satisfy

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\left\lvert\, \frac{|6|}{3}\right.}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

for all $f \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ and all collections of distinct points in $\mathbb{R}^{3} \backslash\left\{f^{-1}(\infty)\right\}$.

Here, $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the Möbius group of global conformal maps and $J_{f}(x)$ denotes the Jacobian of f at x.

4) Conformal invariance

Conjecture 3:

The pointwise correlations of ν_{ϕ} satisfy

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\left[\frac{[0]}{3}\right.}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

for all $f \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ and all collections of distinct points in $\mathbb{R}^{3} \backslash\left\{f^{-1}(\infty)\right\}$.

Here, $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the Möbius group of global conformal maps and $J_{f}(x)$ denotes the Jacobian of f at x.
Conj. 3 is a precise formulation of predictions in "Conformal invariance in the long-range Ising model" by Paulos, Rychkov, van Rees and Zan, arXiv:1509.00008[hep-th] - > Higher-dimensional conformal bootstrap.
5) Möbius group from the AdS/CFT point of view
5) Möbius group from the AdS/CFT point of view Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$.

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3} . \mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{3}}$ generated by isometries, scaling transformations, and the unit-sphere inversion $J(x)=|x|^{-2} x$.

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3} . \mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{3}}$ generated by isometries, scaling transformations, and the unit-sphere inversion $J(x)=|x|^{-2} x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{3}}$ generated by isometries, scaling transformations, and the unit-sphere inversion $J(x)=|x|^{-2} x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{3}} \simeq \mathbb{S}^{3}$ seen as boundary of unit ball \mathbb{B}^{4} with metric $d s=\frac{2|d x|^{2}}{1-|x|^{2}}$.

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of \mathbb{R}^{3} generated by isometries, scaling transformations, and the unit-sphere inversion $J(x)=|x|^{-2} x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{3}} \simeq \mathbb{S}^{3}$ seen as boundary of unit ball \mathbb{B}^{4} with metric $d s=\frac{2|d x|}{1-|x|^{2}}$.
Upper half-space model: \mathbb{R}^{3} seen as boundary of $\mathbb{H}^{4}=\mathbb{R}^{3} \times(0, \infty)$ with metric $d s=\frac{|d x|}{x_{4}}$.

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of \mathbb{R}^{3} generated by isometries, scaling transformations, and the unit-sphere inversion $J(x)=|x|^{-2} x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{3}} \simeq \mathbb{S}^{3}$ seen as boundary of unit ball \mathbb{B}^{4} with metric $d s=\frac{2|d x|^{2}}{1-|x|^{2}}$.
Upper half-space model: \mathbb{R}^{3} seen as boundary of $\mathbb{H}^{4}=\mathbb{R}^{3} \times(0, \infty)$ with metric $d s=\frac{|d x|}{x_{4}}$.
One-to-one correspondence: $f \in \mathcal{M}\left(\mathbb{R}^{3}\right) \leftrightarrow$ hyperbolic isometry of the bulk \mathbb{B}^{4} or \mathbb{H}^{4}.
(1) The Brydges-Mitter-Scoppola (BMS) model in 3D
(2) The p-adic hierarchical model

1) Hierarchical continuum

1) Hierarchical continuum

Let p be an integer >1 (in fact a prime number).
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of boxes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ for $a_{1}, \ldots, a_{d} \in \mathbb{N}$. The cubes in \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

1) Hierarchical continuum

Let p be an integer >1 (in fact a prime number).
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of boxes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ for $a_{1}, \ldots, a_{d} \in \mathbb{N}$. The cubes in \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

Then $\mathbb{T}=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree organized in layers or generations \mathbb{L}_{k} :

Picture for $d=1, p=2$

Now forget about $[0, \infty)^{d}$ and \mathbb{R}^{d}.
Define the substitute for the continuum $\mathbb{Q}_{p}^{d}:=$ set of leafs at infinity " $L_{-\infty}$ ".

Now forget about $[0, \infty)^{d}$ and \mathbb{R}^{d}.
Define the substitute for the continuum $\mathbb{Q}_{p}^{d}:=$ set of leafs at infinity " $\mathbb{L}_{-\infty}$ ".
More precisely, this is the set of upward paths in the tree.

A path representing some $x \in \mathbb{Q}_{p}^{d}$

A point $x \in \mathbb{Q}_{p}^{d}$ encoded by sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$. Let $0 \in \mathbb{Q}_{p}^{d}$ correspond to sequence with all digits equal to zero.

A point $x \in \mathbb{Q}_{p}^{d}$ encoded by sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ correspond to sequence with all digits equal to zero.

Caution! perverse notation ahead

a_{n} represents local coordinates of \mathbb{L}_{-n-1} box inside \mathbb{L}_{-n} box.

A point $x \in \mathbb{Q}_{p}^{d}$ encoded by sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$,
$a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ correspond to sequence with all digits equal to zero.

Caution! perverse notation ahead a_{n} represents local coordinates of \mathbb{L}_{-n-1} box inside \mathbb{L}_{-n} box.

Moreover, scaling defined as follows
if $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Moreover, scaling defined as follows
if $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1} x$ is downward shift and so on for defining $p^{k} x$, $k \in \mathbb{Z}$.
2) Distance

2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the bifurcation between the two paths occurs

2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the bifurcation between the two paths occurs

2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the bifurcation between the two paths occurs

also define $|x|:=|x-0|$.

2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the bifurcation between the two paths occurs

also define $|x|:=|x-0|$. Because of the strange notation

$$
|p x|=p^{-1}|x|
$$

Closed balls Δ of radius p^{k} correspond to points $\mathbf{x} \in \mathbb{L}_{k}$

Closed balls Δ of radius p^{k} correspond to points $\mathbf{x} \in \mathbb{L}_{k}$

3) Lebesgue measure

3) Lebesgue measure

Metric space $\mathbb{Q}_{p}^{d}->$ Borel σ-algebra $->$ Lebesgue measure $d^{d} x$ which gives measure $p^{d k}$ for closed ball of radius p^{k}.
3) Lebesgue measure

Metric space $\mathbb{Q}_{p}^{d}->$ Borel σ-algebra $->$ Lebesgue measure $d^{d} x$ which gives measure $p^{d k}$ for closed ball of radius p^{k}.

Construction: take product of uniform probability measures on $\left(\{0,1, \ldots, p-1\}^{d}\right)^{\mathbb{N}}$ for $\bar{B}(0,1)$ and similarly for other balls of radius 1 , then collate.
4) Massless Gaussian measure

4) Massless Gaussian measure

To any G group of offsprings of site $\mathbf{z} \in \mathbb{L}_{k+1}$ associate centered Gaussian vector $\left(\zeta_{\mathrm{x}}\right)_{\mathrm{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix with $1-p^{-d}$ on diagonal and $-p^{-d}$ everywhere else.
These vectors are set to be independent for different groups or layers.

4) Massless Gaussian measure

To any G group of offsprings of site $\mathbf{z} \in \mathbb{L}_{k+1}$ associate centered Gaussian vector $\left(\zeta_{\mathrm{x}}\right)_{\mathrm{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix with $1-p^{-d}$ on diagonal and $-p^{-d}$ everywhere else.
These vectors are set to be independent for different groups or layers. Note that $\sum_{\mathbf{x} \in G} \zeta_{\mathbf{x}}=0$ a.s.

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.
Likewise for $\operatorname{anc}_{k^{\prime}}(x)$ for $x \in \mathbb{Q}_{p}^{d}$.

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.
Likewise for $\operatorname{anc}_{k^{\prime}}(x)$ for $x \in \mathbb{Q}_{p}^{d}$.
Massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ with engineering scaling dimension [ϕ] is

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.
Likewise for $\operatorname{anc}_{k^{\prime}}(x)$ for $x \in \mathbb{Q}_{p}^{d}$.
Massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ with engineering scaling dimension [ϕ] is

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

only formal since ϕ not defined pointwise. Need random distributions.
5) Test functions

5) Test functions

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ smooth iff locally constant

5) Test functions

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ smooth iff locally constant

$$
\begin{aligned}
S\left(\mathbb{Q}_{p}^{d}\right) & :=\{\text { smooth compactly supported functions }\} \\
& =\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
\end{aligned}
$$

where for $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ is space of functions which are constant in closed boxes of radius p^{t-} and support in $\bar{B}\left(0, p^{t_{+}}\right)$.

5) Test functions

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ smooth iff locally constant

$$
\begin{aligned}
S\left(\mathbb{Q}_{p}^{d}\right) & :=\{\text { smooth compactly supported functions }\} \\
& =\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
\end{aligned}
$$

where for $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ is space of functions which are constant in closed boxes of radius p^{t-} and support in $\bar{B}\left(0, p^{t_{+}}\right)$.

Topology generated by the set of all seminorms.
6) Distributions

6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology

6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology $->$ Polish space.

6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology $->$ Polish space.

Probability theory on $S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is very nice!
(1) Prokhorov's Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(4) Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(4) Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
(5) Analytic RG and dynamical systems methods we introduced deliver exactly that.
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(4) Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
(5) Analytic RG and dynamical systems methods we introduced deliver exactly that.
(6) $S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ so same tools work for joint law of pair of distributional random fields, e.g., $\left(\phi, N\left[\phi^{2}\right]\right)$.
7) p-adic BMS model
7) p-adic BMS model

$$
d=3,[\phi]=\frac{3-\epsilon}{4},
$$

7) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
8) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z} U V$ cut-off, $r \rightarrow-\infty$
9) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
10) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
Cut-off Gaussian measure $\mu_{c_{r}}$ is law of

$$
\phi_{r}(x)=\sum_{k=I r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

7) p-adic BMS model

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z} U V$ cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
Cut-off Gaussian measure $\mu_{c_{r}}$ is law of

$$
\phi_{r}(x)=\sum_{k=I r}^{\infty} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)}
$$

Sample paths are functions that are locally constant at scale L^{r}.
Gaussian measures are scaled copies of each other.

7) p-adic BMS model

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z} \operatorname{IR}$ cut-off, $s \rightarrow \infty$
Cut-off Gaussian measure $\mu_{c_{r}}$ is law of

$$
\phi_{r}(x)=\sum_{k=I r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

Sample paths are functions that are locally constant at scale L^{r}.
Gaussian measures are scaled copies of each other. If law of $\phi(\cdot)$ is μc_{0}, then law of $L^{-r[\phi]} \phi\left(L^{r}\right)$ is μc_{r}.

Introduce fixed parameters g, μ and cut-off dependent couplings $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Introduce fixed parameters g, μ and cut-off dependent couplings $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, volume or IR cut-off.

Introduce fixed parameters g, μ and cut-off dependent couplings $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, volume or IR cut-off.
Let

$$
V_{r, s}(\phi)=\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}: c_{r}(x)+\mu_{r}: \phi^{2}: c_{r}(x)\right\} d^{3} x
$$

and define the probability measure

$$
d \nu_{r, s}(\phi)=\frac{1}{\mathcal{Z}_{r, s}} e^{-V_{r, s}(\phi)} d \mu_{C_{r}}(\phi)
$$

Let $\phi_{r, s}$ random variable in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define square field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is deterministic $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$-valued function of $\phi_{r, s}$ given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

Z_{2}, Y_{0}, Y_{2} are parameters to be adjusted.

Let $\phi_{r, s}$ random variable in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define square field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is deterministic $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$-valued function of $\phi_{r, s}$ given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{Q}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

Z_{2}, Y_{0}, Y_{2} are parameters to be adjusted.
Our main result concerns the limit law of the pair $\left(\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ when $r \rightarrow-\infty, s \rightarrow \infty$ regardless of the order of limits.
Will need approximate fixed point coupling

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)}
$$

8) Results

8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi], \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=$ $L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi], \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=$ $L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.

8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi], \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=$ $L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here $\mathbf{1}_{\mathbb{Z}_{\beta}^{3}}$ is the indicator function of $\bar{B}(0,1)$.

8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi], \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=$ $L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here $\mathbf{1}_{\mathbb{Z}_{\beta}^{3}}$ is the indicator function of $\bar{B}(0,1)$.
(3) $\left\langle N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}=1$.

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For the p-adic BMS model we also proved $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$ as expected in Euclidean BMS model.

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For the p-adic BMS model we also proved $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$ as expected in Euclidean BMS model.

Not too far, if one sets $\epsilon=1$, from 3D short-range Ising for which recent progress in conformal bootstrap gives $\left[\phi^{2}\right]-2[\phi]=0.3763 \ldots$ (Simmons-Duffin 2015).

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For the p-adic BMS model we also proved $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$ as expected in Euclidean BMS model.

Not too far, if one sets $\epsilon=1$, from 3D short-range Ising for which recent progress in conformal bootstrap gives $\left[\phi^{2}\right]-2[\phi]=0.3763 \ldots$ (Simmons-Duffin 2015).

The law $\nu_{\phi \times \phi^{2}}$ of $\left(\phi, N\left[\phi^{2}\right]\right)$ is independent of g : universality

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ independent of RG step L.

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ independent of RG step L.

Two point functions given as distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|^{2\left[\phi^{2}\right]}}
\end{gathered}
$$

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ independent of RG step L.

Two point functions given as distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|^{2\left[\phi^{2}\right]}}
\end{gathered}
$$

Note that $3-2\left[\phi^{2}\right]=3-\frac{1}{3} \epsilon+o(\epsilon)->$ still $L^{1, \text { loc }}$!

Theorem 3: A.A., May 2015

Let ψ_{i} denote ϕ or $N\left[\phi^{2}\right]$. Then for every mixed correlation \exists smooth function $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (even on Diag) such that

$$
\begin{aligned}
& \left\langle\psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\left(\mathbb{Q}_{p}^{3}\right) n \backslash \text { Diag }}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{aligned}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

Theorem 3: A.A., May 2015

Let ψ_{i} denote ϕ or $N\left[\phi^{2}\right]$. Then for every mixed correlation \exists smooth function $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (even on Diag) such that

$$
\begin{aligned}
& \left\langle\psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\left(\mathbb{Q}_{p}^{3}\right) n \backslash \operatorname{Diag}}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{aligned}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

Namely, $\nu_{\phi \times \phi^{2}}$ satisfies the DPC property or the analogue of Conj. 2.

9) Work in progress

9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.

9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.
Preliminary work done by Lerner and Missarov in early nineties.

9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.
Preliminary work done by Lerner and Missarov in early nineties.
p-adic Möbius group: generated by isometries (for the ultrametric $|x-y|, x, y \in \mathbb{Q}_{p}^{3}$), scaling transformations $x \mapsto p^{k} x, k \in \mathbb{Z}$, and the unit-sphere inversion $J(x)=|x|^{2} x$.

9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.
Preliminary work done by Lerner and Missarov in early nineties.
p-adic Möbius group: generated by isometries (for the ultrametric $|x-y|, x, y \in \mathbb{Q}_{p}^{3}$), scaling transformations $x \mapsto p^{k} x, k \in \mathbb{Z}$, and the unit-sphere inversion $J(x)=|x|^{2} x$.

Alternatively, one can define the absolute cross-ratio using the ultrametric, then $\mathcal{M}\left(\mathbb{Q}_{p}^{3}\right)$ is the group of bijections of $\widehat{\mathbb{Q}_{p}^{3}}=\mathbb{Q}_{p}^{3} \cup\{\infty\}$ which preserve the cross-ratio.

9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.
Preliminary work done by Lerner and Missarov in early nineties.
p-adic Möbius group: generated by isometries (for the ultrametric $|x-y|, x, y \in \mathbb{Q}_{p}^{3}$), scaling transformations $x \mapsto p^{k} x, k \in \mathbb{Z}$, and the unit-sphere inversion $J(x)=|x|^{2} x$.

Alternatively, one can define the absolute cross-ratio using the ultrametric, then $\mathcal{M}\left(\mathbb{Q}_{p}^{3}\right)$ is the group of bijections of $\widehat{\mathbb{Q}_{p}^{3}}=\mathbb{Q}_{p}^{3} \cup\{\infty\}$ which preserve the cross-ratio.

The AdS bulk is the tree \mathbb{T} with the graph distance. Analogue of hyperbolic metric.

Mumford-Manin-Drinfeld Cross-Ratio Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges in bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

Mumford-Manin-Drinfeld Cross-Ratio Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges in bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

Using the cross-ratio lemma, one can again establish a one-to-one correspondence: $f \in \mathcal{M}\left(\mathbb{Q}_{p}^{3}\right) \leftrightarrow$ hyperbolic isometry of the bulk \mathbb{T}.

Mumford-Manin-Drinfeld Cross-Ratio Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges in bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

Using the cross-ratio lemma, one can again establish a one-to-one correspondence: $f \in \mathcal{M}\left(\mathbb{Q}_{p}^{3}\right) \leftrightarrow$ hyperbolic isometry of the bulk \mathbb{T}.

Rigorous RG for space-dependent couplings in ACG 2013 - > space-dependent cut-offs $->$ Conj. 3. by showing equivalence of usual upper half-space cut-off with conformal ball cut-off.

The tree again
10) The last slide
10) The last slide

Cher Vincent,
10) The last slide

Cher Vincent,

Je te souhaite encore beaucoup d'années,
10) The last slide

Cher Vincent,

Je te souhaite encore beaucoup d'années, et encore beaucoup d'étudiants.
10) The last slide

Cher Vincent,

Je te souhaite encore beaucoup d'années, et encore beaucoup d'étudiants.

Joyeux Anniversaire!

