Towards Three-Dimensional Conformal Probability

Abdelmalek Abdesselam Department of Mathematics, University of Virginia

Main reference: arXiv:1511.03180[math.PR]

Conference in honor of Vincent Rivasseau Paris, November 25, 2015

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Brydges-Mitter-Scoppola (BMS) model in 3D

The p-adic hierarchical model

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

The BMS model is the family of probability measures on $S'(\mathbb{R}^3)$ formally given by

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\langle\phi,(-\Delta)^{\alpha}\phi\rangle-\int_{\mathbb{R}^{3}}\left\{g\phi(x)^{4}+\mu\phi(x)^{2}\right\}d^{3}x\right)D\phi$$

with fractional power of Laplacian $\alpha = \frac{3+\epsilon}{4}$, $0 < \epsilon \ll 1$.

The BMS model is the family of probability measures on $S'(\mathbb{R}^3)$ formally given by

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\langle\phi,(-\Delta)^{\alpha}\phi\rangle-\int_{\mathbb{R}^{3}}\left\{g\phi(x)^{4}+\mu\phi(x)^{2}\right\}d^{3}x\right)D\phi$$

with fractional power of Laplacian $\alpha = \frac{3+\epsilon}{4}$, $0 < \epsilon \ll 1$.

Main focus: the scale invariant theory corresponding to a nontrivial RG fixed point (BMS in CMP 2003).

The BMS model is the family of probability measures on $S'(\mathbb{R}^3)$ formally given by

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\langle\phi,(-\Delta)^{\alpha}\phi\rangle-\int_{\mathbb{R}^{3}}\left\{g\phi(x)^{4}+\mu\phi(x)^{2}\right\}d^{3}x\right)D\phi$$

with fractional power of Laplacian $\alpha = \frac{3+\epsilon}{4}$, $0 < \epsilon \ll 1$.

Main focus: the scale invariant theory corresponding to a nontrivial RG fixed point (BMS in CMP 2003).

Should correspond to critical scaling limit of long-range three-dimensional Ising model with ferromagnetic interactions $J_{\mathbf{x},\mathbf{y}} \sim |\mathbf{x} - \mathbf{y}|^{-(d+\sigma)}$, d = 3, $\sigma = \frac{3+\epsilon}{2}$.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

Define continuous bilinear form $C_{-\infty}$ on $S(\mathbb{R}^3)$ by

$$\mathcal{C}_{-\infty}(f,g) = rac{1}{(2\pi)^3} \int_{\mathbb{R}^3} rac{\widehat{\widehat{f}(\xi)}\widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3\xi$$

where $[\phi] = \frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$.

Define continuous bilinear form $C_{-\infty}$ on $S(\mathbb{R}^3)$ by

$$\mathcal{C}_{-\infty}(f,g) = rac{1}{(2\pi)^3} \int_{\mathbb{R}^3} rac{\widehat{f(\xi)}\widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3\xi$$

where $[\phi] = \frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Introduce mollifier ρ_{UV} : smooth function $\mathbb{R}^3 \to \mathbb{R}$, compact support, O(3)-invariant, $\int \rho_{UV} = 1$.

Define continuous bilinear form $C_{-\infty}$ on $S(\mathbb{R}^3)$ by

$$C_{-\infty}(f,g) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{\overline{\widehat{f}(\xi)}\widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^3\xi$$

where $[\phi] = \frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Introduce mollifier ρ_{UV} : smooth function $\mathbb{R}^3 \to \mathbb{R}$, compact support, O(3)-invariant, $\int \rho_{UV} = 1$. Introduce volume cut-off function ρ_{IR} : smooth function $\mathbb{R}^3 \to \mathbb{R}$, compact support, O(3)-invariant, nonnegative, equal to 1 in neighborhood of origin.

Define continuous bilinear form $C_{-\infty}$ on $S(\mathbb{R}^3)$ by

$$C_{-\infty}(f,g) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \overline{\frac{\widehat{f}(\xi)}{|\xi|^{3-2[\phi]}}} d^3\xi$$

where $[\phi] = \frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Introduce mollifier $\rho_{\rm UV}$: smooth function $\mathbb{R}^3 \to \mathbb{R}$, compact support, O(3)-invariant, $\int \rho_{\rm UV} = 1$. Introduce volume cut-off function $\rho_{\rm IR}$: smooth function $\mathbb{R}^3 \to \mathbb{R}$, compact support, O(3)-invariant, nonnegative, equal

to 1 in neighborhood of origin.

Fix rescaling ratio L > 1, integer.

For $r \in \mathbb{Z}$ (UV cut-off $r \to -\infty$), let $\rho_{\mathrm{UV},r}(x) = L^{-3r} \rho_{\mathrm{UV}}(L^{-r}x)$.

For $r \in \mathbb{Z}$ (UV cut-off $r \to -\infty$), let $\rho_{\mathrm{UV},r}(x) = L^{-3r} \rho_{\mathrm{UV}}(L^{-r}x)$. For $s \in \mathbb{Z}$ (IR cut-off $s \to \infty$), let $\rho_{\mathrm{IR},s}(x) = \rho_{\mathrm{IR}}(L^{-s}x)$. For $r \in \mathbb{Z}$ (UV cut-off $r \to -\infty$), let $\rho_{UV,r}(x) = L^{-3r}\rho_{UV}(L^{-r}x)$. For $s \in \mathbb{Z}$ (IR cut-off $s \to \infty$), let $\rho_{IR,s}(x) = \rho_{IR}(L^{-s}x)$. Let μ_{C_r} be the law of $\phi * \rho_{UV,r}$ for random $\phi \in S'(\mathbb{R}^3)$ with law $C_{-\infty}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $r \in \mathbb{Z}$ (UV cut-off $r \to -\infty$), let $\rho_{UV,r}(x) = L^{-3r}\rho_{UV}(L^{-r}x)$. For $s \in \mathbb{Z}$ (IR cut-off $s \to \infty$), let $\rho_{IR,s}(x) = \rho_{IR}(L^{-s}x)$. Let μ_{C_r} be the law of $\phi * \rho_{UV,r}$ for random $\phi \in S'(\mathbb{R}^3)$ with law $C_{-\infty}$.

Given bare ansatz $(g_r, \mu_r)_{r \in \mathbb{Z}}$, one has well defined probability measures $d\nu_{r,s}(\phi)$ whose Radon-Nikodym derivative with respect to $d\mu_{C_r}(\phi)$ is proportional to

$$\exp\left(-\int_{\mathbb{R}^3}\rho_{\mathrm{IR},\mathfrak{s}}(x)\left\{g_r:\phi^4:(x)+\mu_r:\phi^2:(x)\right\}d^3x\right)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

with Wick ordering relative to μ_{C_r} .

For $r \in \mathbb{Z}$ (UV cut-off $r \to -\infty$), let $\rho_{\mathrm{UV},r}(x) = L^{-3r}\rho_{\mathrm{UV}}(L^{-r}x)$. For $s \in \mathbb{Z}$ (IR cut-off $s \to \infty$), let $\rho_{\mathrm{IR},s}(x) = \rho_{\mathrm{IR}}(L^{-s}x)$. Let μ_{C_r} be the law of $\phi * \rho_{\mathrm{UV},r}$ for random $\phi \in S'(\mathbb{R}^3)$ with law $C_{-\infty}$.

Given bare ansatz $(g_r, \mu_r)_{r \in \mathbb{Z}}$, one has well defined probability measures $d\nu_{r,s}(\phi)$ whose Radon-Nikodym derivative with respect to $d\mu_{C_r}(\phi)$ is proportional to

$$\exp\left(-\int_{\mathbb{R}^3}\rho_{\mathrm{IR},s}(x)\left\{g_r:\phi^4:(x)+\mu_r:\phi^2:(x)\right\}d^3x\right)$$

with Wick ordering relative to μ_{C_r} .

The scale invariant BMS measure should be the weak limit $\nu_{\phi} = \lim_{r \to -\infty} \lim_{s \to \infty} \nu_{r,s}$ for a well chosen bare ansatz which mimics the scaling limit of a critical theory on the unit lattice.

Conjecture 1:

Set $[\phi] = \frac{3-\epsilon}{4}$ for ϵ positive and small. Then there exists a nonempty interval $I \subset (0, \infty)$ and a function $\mu_c: I \to \mathbb{R}$ such that for all $g \in I$, if one sets $g_r = L^{-r(3-4[\phi])}g$ and $\mu_r = L^{-r(3-2[\phi])}\mu_c(g)$, the weak limit ν_{ϕ} exists and is non-Gaussian, translation-invariant, O(3)-invariant, OS positive, and scale-invariant with exponent $[\phi]$, i.e., $\lambda^{[\phi]}\phi(\lambda \cdot) \stackrel{dd}{=} \phi(\cdot)$ for all $\lambda > 0$. Moreover, this limit is independent of L and $g \in I$ as well as the choice of functions $\rho_{\rm UV}, \rho_{\rm IR}$.

Conjecture 1:

Set $[\phi] = \frac{3-\epsilon}{4}$ for ϵ positive and small. Then there exists a nonempty interval $I \subset (0, \infty)$ and a function $\mu_c: I \to \mathbb{R}$ such that for all $g \in I$, if one sets $g_r = L^{-r(3-4[\phi])}g$ and $\mu_r = L^{-r(3-2[\phi])}\mu_c(g)$, the weak limit ν_{ϕ} exists and is non-Gaussian, translation-invariant, O(3)-invariant, OS positive, and scale-invariant with exponent $[\phi]$, i.e., $\lambda^{[\phi]}\phi(\lambda \cdot) \stackrel{dd}{=} \phi(\cdot)$ for all $\lambda > 0$. Moreover, this limit is independent of L and $g \in I$ as well as the choice of functions $\rho_{\text{UV}}, \rho_{\text{IR}}$.

Measure constructed on finite torus by Mitter (\sim 2004) using fixed point obtained by BMS, CMP 2003.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

A probability measure μ on $S'(\mathbb{R}^3)$ has the finite moment of all orders (MAO) property if for all $f \in S(\mathbb{R}^3)$ and all $p \in [0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^p(S'(\mathbb{R}^3), \mu)$.

A probability measure μ on $S'(\mathbb{R}^3)$ has the finite moment of all orders (MAO) property if for all $f \in S(\mathbb{R}^3)$ and all $p \in [0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^p(S'(\mathbb{R}^3), \mu)$. The moments

$$S_n(f_1,\ldots,f_n) = \langle \phi(f_1)\cdots\phi(f_n) \rangle = \int_{S'(\mathbb{R}^3)} \phi(f_1)\cdots\phi(f_n) d\mu(\phi)$$

are automatically continuous *n*-linear forms (Fernique 1967).

A probability measure μ on $S'(\mathbb{R}^3)$ has the finite moment of all orders (MAO) property if for all $f \in S(\mathbb{R}^3)$ and all $p \in [0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^p(S'(\mathbb{R}^3), \mu)$. The moments

$$S_n(f_1,\ldots,f_n) = \langle \phi(f_1)\cdots\phi(f_n)\rangle = \int_{S'(\mathbb{R}^3)} \phi(f_1)\cdots\phi(f_n)d\mu(\phi)$$

are automatically continuous *n*-linear forms (Fernique 1967).

A probability measure μ is determined by correlations (DC) if it is MAO and the only MAO measure with the same sequence of moments S_n as μ is μ itself.

A probability measure μ on $S'(\mathbb{R}^3)$ has the finite moment of all orders (MAO) property if for all $f \in S(\mathbb{R}^3)$ and all $p \in [0, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^p(S'(\mathbb{R}^3), \mu)$. The moments

$$S_n(f_1,\ldots,f_n) = \langle \phi(f_1)\cdots\phi(f_n) \rangle = \int_{S'(\mathbb{R}^3)} \phi(f_1)\cdots\phi(f_n) d\mu(\phi)$$

are automatically continuous *n*-linear forms (Fernique 1967).

A probability measure μ is determined by correlations (DC) if it is MAO and the only MAO measure with the same sequence of moments S_n as μ is μ itself. By the nuclear theorem S_n can be seen as an element of $S'(\mathbb{R}^{3n})$.

① For all *n*, $S_n \in S'(\mathbb{R}^{3n})$ has singular support in the big diagonal $\text{Diag}_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j\}$. This defines the smooth pointwise correlations $S_n(x_1, \ldots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ on $\mathbb{R}^{3n} \setminus \text{Diag}_n$.

- **1** For all *n*, *S_n* ∈ *S'*(\mathbb{R}^{3n}) has singular support in the big diagonal Diag_{*n*} = {(*x*₁,...,*x_n*) ∈ \mathbb{R}^{3n} |∃*i* ≠ *j*, *x_i* = *x_j*}. This defines the smooth pointwise correlations *S_n*(*x*₁,...,*x_n*) = $\langle \phi(x_1) \cdots \phi(x_n) \rangle$ on $\mathbb{R}^{3n} \setminus \text{Diag}_n$.
- 2 The pointwise correlations are $L^{1,\text{loc}}$ on the big diagonal.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- **①** For all *n*, $S_n \in S'(\mathbb{R}^{3n})$ has singular support in the big diagonal $\text{Diag}_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j\}$. This defines the smooth pointwise correlations $S_n(x_1, \ldots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ on $\mathbb{R}^{3n} \setminus \text{Diag}_n$.
- 2 The pointwise correlations are $L^{1,\text{loc}}$ on the big diagonal.
- 3 For all *n*, and all test functions $f_1, \ldots, f_n \in S(\mathbb{R}^3)$,

$$\langle \phi(f_1)\cdots\phi(f_n)\rangle = \int_{\mathbb{R}^{3n}\setminus\mathrm{Diag}_n} \langle \phi(x_1)\cdots\phi(x_n)\rangle f(x_1)\cdots f(x_n)d^3x_1\cdots d^3x_n.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- **①** For all *n*, $S_n \in S'(\mathbb{R}^{3n})$ has singular support in the big diagonal $\text{Diag}_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^{3n} | \exists i \neq j, x_i = x_j\}$. This defines the smooth pointwise correlations $S_n(x_1, \ldots, x_n) = \langle \phi(x_1) \cdots \phi(x_n) \rangle$ on $\mathbb{R}^{3n} \setminus \text{Diag}_n$.
- 2 The pointwise correlations are $L^{1,\text{loc}}$ on the big diagonal.
- 3 For all *n*, and all test functions $f_1, \ldots, f_n \in S(\mathbb{R}^3)$,

$$\langle \phi(f_1) \cdots \phi(f_n) \rangle = \int_{\mathbb{R}^{3n} \setminus \text{Diag}_n} \langle \phi(x_1) \cdots \phi(x_n) \rangle f(x_1) \cdots f(x_n) d^3 x_1 \cdots d^3 x_n.$$

Conjecture 2: ν_{ϕ} is DPC.

Conjecture 3:

The pointwise correlations of u_{ϕ} satisfy

$$\langle \phi(x_1)\cdots\phi(x_n)\rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{[\phi]}{3}}\right) \times \langle \phi(f(x_1))\cdots\phi(f(x_n))\rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^3)$ and all collections of distinct points in $\mathbb{R}^3 \setminus \{f^{-1}(\infty)\}.$

Conjecture 3:

The pointwise correlations of u_{ϕ} satisfy

$$\langle \phi(x_1)\cdots\phi(x_n)\rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{[\phi]}{3}}\right) \times \langle \phi(f(x_1))\cdots\phi(f(x_n))\rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^3)$ and all collections of distinct points in $\mathbb{R}^3 \setminus \{f^{-1}(\infty)\}$.

Here, $\mathcal{M}(\mathbb{R}^3)$ is the Möbius group of global conformal maps and $J_f(x)$ denotes the Jacobian of f at x.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Conjecture 3:

The pointwise correlations of u_{ϕ} satisfy

$$\langle \phi(x_1)\cdots\phi(x_n)\rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{[\phi]}{3}}\right) \times \langle \phi(f(x_1))\cdots\phi(f(x_n))\rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^3)$ and all collections of distinct points in $\mathbb{R}^3 \setminus \{f^{-1}(\infty)\}$.

Here, $\mathcal{M}(\mathbb{R}^3)$ is the Möbius group of global conformal maps and $J_f(x)$ denotes the Jacobian of f at x. Conj. 3 is a precise formulation of predictions in "Conformal invariance in the long-range Ising model" by Paulos, Rychkov, van Rees and Zan, arXiv:1509.00008[hep-th] - >Higher-dimensional conformal bootstrap.

5) Möbius group from the AdS/CFT point of view

5) Möbius group from the AdS/CFT point of view Let $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ is the group of bijective transformations of $\widehat{\mathbb{R}^3}$ generated by isometries, scaling transformations, and the unit-sphere inversion $J(x) = |x|^{-2}x$.

5) Möbius group from the AdS/CFT point of view

Let $\mathbb{R}^3 = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ is the group of bijective transformations of \mathbb{R}^3 generated by isometries, scaling transformations, and the unit-sphere inversion $J(x) = |x|^{-2}x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}$$
5) Möbius group from the AdS/CFT point of view

Let $\mathbb{R}^3 = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ is the group of bijective transformations of \mathbb{R}^3 generated by isometries, scaling transformations, and the unit-sphere inversion $J(x) = |x|^{-2}x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}$$

Conformal ball model: $\widehat{\mathbb{R}^3} \simeq \mathbb{S}^3$ seen as boundary of unit ball \mathbb{B}^4 with metric $ds = \frac{2|dx|}{1-|x|^2}$.

5) Möbius group from the AdS/CFT point of view

Let $\mathbb{R}^3 = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ is the group of bijective transformations of \mathbb{R}^3 generated by isometries, scaling transformations, and the unit-sphere inversion $J(x) = |x|^{-2}x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}$$

Conformal ball model: $\mathbb{R}^3 \simeq \mathbb{S}^3$ seen as boundary of unit ball \mathbb{B}^4 with metric $ds = \frac{2|dx|}{1-|x|^2}$. **Upper half-space model:** \mathbb{R}^3 seen as boundary of $\mathbb{H}^4 = \mathbb{R}^3 \times (0, \infty)$ with metric $ds = \frac{|dx|}{x_4}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

5) Möbius group from the AdS/CFT point of view

Let $\widehat{\mathbb{R}^3} = \mathbb{R}^3 \cup \{\infty\} \simeq \mathbb{S}^3$. $\mathcal{M}(\mathbb{R}^3)$ is the group of bijective transformations of $\widehat{\mathbb{R}^3}$ generated by isometries, scaling transformations, and the unit-sphere inversion $J(x) = |x|^{-2}x$. Equivalently, it is the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}$$

Conformal ball model: $\mathbb{R}^3 \simeq \mathbb{S}^3$ seen as boundary of unit ball \mathbb{B}^4 with metric $ds = \frac{2|dx|}{1-|x|^2}$. Upper half-space model: \mathbb{R}^3 seen as boundary of $\mathbb{H}^4 = \mathbb{R}^3 \times (0, \infty)$ with metric $ds = \frac{|dx|}{x_4}$. One-to-one correspondence: $f \in \mathcal{M}(\mathbb{R}^3) \leftrightarrow$ hyperbolic isometry of the bulk \mathbb{B}^4 or \mathbb{H}^4 .

The Brydges-Mitter-Scoppola (BMS) model in 3D

The p-adic hierarchical model

1) Hierarchical continuum

1) Hierarchical continuum

Let p be an integer > 1 (in fact a prime number).

Let \mathbb{L}_k , $k \in \mathbb{Z}$, be the set of boxes $\prod_{i=1}^d [a_i p^k, (a_i + 1)p^k]$ for $a_1, \ldots, a_d \in \mathbb{N}$. The cubes in \mathbb{L}_k form a partition of the octant $[0, \infty)^d$.

1) Hierarchical continuum

Let p be an integer > 1 (in fact a prime number).

Let \mathbb{L}_k , $k \in \mathbb{Z}$, be the set of boxes $\prod_{i=1}^d [a_i p^k, (a_i + 1)p^k]$ for $a_1, \ldots, a_d \in \mathbb{N}$. The cubes in \mathbb{L}_k form a partition of the octant $[0, \infty)^d$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then $\mathbb{T} = \bigcup_{k \in \mathbb{Z}} \mathbb{L}_k$ naturally has the structure of a doubly infinite tree organized in layers or generations \mathbb{L}_k :

Picture for d = 1, p = 2

Now forget about $[0,\infty)^d$ and \mathbb{R}^d . Define the substitute for the continuum $\mathbb{Q}_p^d :=$ set of leafs at infinity " $\mathbb{L}_{-\infty}$ ". Now forget about $[0,\infty)^d$ and \mathbb{R}^d . Define the substitute for the continuum $\mathbb{Q}_p^d :=$ set of leafs at infinity. "

infinity " $\mathbb{L}_{-\infty}$ ".

More precisely, this is the set of upward paths in the tree.

A point $x \in \mathbb{Q}_p^d$ encoded by sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Let $0 \in \mathbb{Q}_p^d$ correspond to sequence with all digits equal to zero. A point $x \in \mathbb{Q}_p^d$ encoded by sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Let $0 \in \mathbb{Q}_p^d$ correspond to sequence with all digits equal to zero.

Caution! perverse notation ahead

 a_n represents local coordinates of \mathbb{L}_{-n-1} box inside \mathbb{L}_{-n} box.

A point $x \in \mathbb{Q}_p^d$ encoded by sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Let $0 \in \mathbb{Q}_p^d$ correspond to sequence with all digits equal to zero.

Caution! perverse notation ahead

 a_n represents local coordinates of \mathbb{L}_{-n-1} box inside \mathbb{L}_{-n} box.

Moreover, scaling defined as follows if $x = (a_n)_{n \in \mathbb{Z}}$ then $px = (a_{n-1})_{n \in \mathbb{Z}}$, i.e., upward shift. Moreover, scaling defined as follows if $x = (a_n)_{n \in \mathbb{Z}}$ then $px = (a_{n-1})_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1}x$ is downward shift and so on for defining $p^k x$, $k \in \mathbb{Z}$.

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y| := p^k$ where k is the depth where the bifurcation between the two paths occurs

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y| := p^k$ where k is the depth where the bifurcation between the two paths occurs

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y| := p^k$ where k is the depth where the bifurcation between the two paths occurs

SQC

also define |x| := |x - 0|.

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y| := p^k$ where k is the depth where the bifurcation between the two paths occurs

also define |x| := |x - 0|. Because of the strange notation $|px| = p^{-1}|x|$ Closed balls Δ of radius p^k correspond to points $\mathbf{x} \in \mathbb{L}_k$

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Closed balls Δ of radius p^k correspond to points $\mathbf{x} \in \mathbb{L}_k$

3) Lebesgue measure

3) Lebesgue measure

Metric space $\mathbb{Q}_p^d - >$ Borel σ -algebra - > Lebesgue measure $d^d x$ which gives measure p^{dk} for closed ball of radius p^k .

3) Lebesgue measure

Metric space $\mathbb{Q}_p^d - >$ Borel σ -algebra - > Lebesgue measure $d^d x$ which gives measure p^{dk} for closed ball of radius p^k .

Construction: take product of uniform probability measures on $(\{0, 1, \ldots, p-1\}^d)^{\mathbb{N}}$ for $\overline{B}(0, 1)$ and similarly for other balls of radius 1, then collate.

4) Massless Gaussian measure

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

4) Massless Gaussian measure

To any *G* group of offsprings of site $\mathbf{z} \in \mathbb{L}_{k+1}$ associate centered Gaussian vector $(\zeta_{\mathbf{x}})_{\mathbf{x}\in G}$ with $p^d \times p^d$ covariance matrix with $1 - p^{-d}$ on diagonal and $-p^{-d}$ everywhere else. These vectors are set to be independent for different groups or layers.

4) Massless Gaussian measure

To any *G* group of offsprings of site $z \in L_{k+1}$ associate centered Gaussian vector $(\zeta_x)_{x \in G}$ with $p^d \times p^d$ covariance matrix with $1 - p^{-d}$ on diagonal and $-p^{-d}$ everywhere else. These vectors are set to be independent for different groups or layers. Note that $\sum_{x \in G} \zeta_x = 0$ a.s. Ancestor function: for k < k', $\mathbf{x} \in \mathbb{L}_k$, let $\operatorname{anc}_{k'}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k'}$.

Ancestor function: for k < k', $\mathbf{x} \in \mathbb{L}_k$, let $\operatorname{anc}_{k'}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k'}$. Likewise for $\operatorname{anc}_{k'}(x)$ for $x \in \mathbb{Q}_p^d$. Ancestor function: for k < k', $\mathbf{x} \in \mathbb{L}_k$, let $\operatorname{anc}_{k'}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k'}$. Likewise for $\operatorname{anc}_{k'}(x)$ for $x \in \mathbb{Q}_p^d$. Massless Gaussian field $\phi(x), x \in \mathbb{Q}_p^d$ with engineering scaling dimension $[\phi]$ is

$$\phi(x) = \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

$$\langle \phi(x)\phi(y)
angle = rac{c}{|x-y|^{2[\phi]}}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Ancestor function: for k < k', $\mathbf{x} \in \mathbb{L}_k$, let $\operatorname{anc}_{k'}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k'}$. Likewise for $\operatorname{anc}_{k'}(x)$ for $x \in \mathbb{Q}_p^d$. Massless Gaussian field $\phi(x), x \in \mathbb{Q}_p^d$ with engineering scaling dimension $[\phi]$ is

$$\phi(x) = \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

$$\langle \phi(x)\phi(y)
angle = rac{c}{|x-y|^{2[\phi]}}$$

only formal since ϕ not defined pointwise. Need random distributions.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ smooth iff locally constant

$f : \mathbb{Q}_p^d \to \mathbb{R}$ smooth iff locally constant $S(\mathbb{Q}_p^d) := \{ \text{smooth compactly supported functions} \}$ $= \cup_{n \in \mathbb{N}} S_{-n,n}(\mathbb{Q}_p^d)$

where for $t_{-} \leq t_{+}$, $S_{t_{-},t_{+}}(\mathbb{Q}_{p}^{d})$ is space of functions which are constant in closed boxes of radius $p^{t_{-}}$ and support in $\overline{B}(0, p^{t_{+}})$.

$f : \mathbb{Q}_p^d \to \mathbb{R}$ smooth iff locally constant $S(\mathbb{Q}_p^d) := \{ \text{smooth compactly supported functions} \}$ $= \cup_{n \in \mathbb{N}} S_{-n,n}(\mathbb{Q}_p^d)$

where for $t_{-} \leq t_{+}$, $S_{t_{-},t_{+}}(\mathbb{Q}_{p}^{d})$ is space of functions which are constant in closed boxes of radius $p^{t_{-}}$ and support in $\overline{B}(0, p^{t_{+}})$.

Topology generated by the set of all seminorms.
・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

 $S'(\mathbb{Q}_p^d)$ is topological dual with weak-* topology.

 $S'(\mathbb{Q}_p^d)$ is topological dual with weak-* topology.

 $S(\mathbb{Q}_p^d)\simeq\oplus_{\mathbb{N}}\mathbb{R}$

4 日 ト 4 目 ト 4 目 ト 4 目 9 4 (や)

 $S'(\mathbb{Q}_p^d)$ is topological dual with weak-* topology.

$S(\mathbb{Q}_p^d)\simeq\oplus_{\mathbb{N}}\mathbb{R}$

Thus

$$S'(\mathbb{Q}^d_p)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology

 $S'(\mathbb{Q}_p^d)$ is topological dual with weak-* topology.

$$S(\mathbb{Q}_p^d)\simeq\oplus_{\mathbb{N}}\mathbb{R}$$

Thus

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology -> Polish space.

 $S'(\mathbb{Q}_p^d)$ is topological dual with weak-* topology.

$$S(\mathbb{Q}^d_p)\simeq\oplus_{\mathbb{N}}\mathbb{R}$$

Thus

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology -> Polish space.

Probability theory on $\mathcal{S}'(\mathbb{Q}_p^d)$ is very nice!

<□> < @> < E> < E> E のQC

- Prokhorov's Theorem
- 2 Bochner's Theorem

- Prokhorov's Theorem
- 2 Bochner's Theorem
- 3 Levy's Continuity Theorem

- Prokhorov's Theorem
- 2 Bochner's Theorem
- ③ Levy's Continuity Theorem
- ④ Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

- Prokhorov's Theorem
- 2 Bochner's Theorem
- 3 Levy's Continuity Theorem
- ④ Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

S Analytic RG and dynamical systems methods we introduced deliver exactly that.

- Prokhorov's Theorem
- 2 Bochner's Theorem
- ③ Levy's Continuity Theorem
- ④ Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
- S Analytic RG and dynamical systems methods we introduced deliver exactly that.
- 6 $S'(\mathbb{Q}_p^d) \times S'(\mathbb{Q}_p^d) \simeq S'(\mathbb{Q}_p^d)$ so same tools work for joint law of pair of distributional random fields, e.g., $(\phi, N[\phi^2])$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$d = 3, \ [\phi] = \frac{3-\epsilon}{4},$$

d = 3, $[\phi] = \frac{3-\epsilon}{4}$, L = p' RG step

- d = 3, $[\phi] = \frac{3-\epsilon}{4}$, L = p' RG step
- $r\in\mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$

- d = 3, $[\phi] = \frac{3-\epsilon}{4}$, L = p' RG step
- $r\in\mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s \in \mathbb{Z}$ IR cut-off, $s o \infty$

- d = 3, $[\phi] = \frac{3-\epsilon}{4}$, L = p' RG step
- $r\in\mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

Cut-off Gaussian measure μ_{C_r} is law of

$$\phi_r(x) = \sum_{k=lr}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- d = 3, $[\phi] = \frac{3-\epsilon}{4}$, L = p' RG step
- $\textit{r} \in \mathbb{Z}$ UV cut-off, $\textit{r}
 ightarrow -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

Cut-off Gaussian measure μ_{C_r} is law of

$$\phi_r(x) = \sum_{k=lr}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Sample paths are functions that are locally constant at scale L^r .

Gaussian measures are scaled copies of each other.

- d = 3, $[\phi] = \frac{3-\epsilon}{4}$, L = p' RG step
- $r \in \mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

Cut-off Gaussian measure μ_{C_r} is law of

$$\phi_r(x) = \sum_{k=lr}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Sample paths are functions that are locally constant at scale L^r . Gaussian measures are scaled copies of each other.

If law of $\phi(\cdot)$ is μ_{C_0} , then law of $L^{-r[\phi]}\phi(L^r \cdot)$ is μ_{C_r} .

Introduce fixed parameters g, μ and cut-off dependent couplings $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$.

Introduce fixed parameters g, μ and cut-off dependent couplings $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$.

Let $\Lambda_s = \overline{B}(0, L^s)$, volume or IR cut-off.

Introduce fixed parameters g, μ and cut-off dependent couplings $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$.

Let $\Lambda_s = \overline{B}(0, L^s)$, volume or IR cut-off.

Let

$$V_{r,s}(\phi) = \int_{\Lambda_s} \{g_r : \phi^4 :_{C_r} (x) + \mu_r : \phi^2 :_{C_r} (x)\} d^3x$$

and define the probability measure

$$d\nu_{r,s}(\phi) = \frac{1}{\mathcal{Z}_{r,s}} e^{-V_{r,s}(\phi)} d\mu_{C_r}(\phi)$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Let $\phi_{r,s}$ random variable in $S'(\mathbb{Q}_p^3)$ sampled according to $\nu_{r,s}$ and define square field $N_r[\phi_{r,s}^2]$ which is deterministic $S'(\mathbb{Q}_p^3)$ -valued function of $\phi_{r,s}$ given by

$$N_{r}[\phi_{r,s}^{2}](j) = Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}} \{Y_{2} : \phi_{r,s}^{2} : C_{r}(x) - Y_{0}L^{-2r[\phi]}\} j(x) d^{3}x$$

 Z_2 , Y_0 , Y_2 are parameters to be adjusted.

Let $\phi_{r,s}$ random variable in $S'(\mathbb{Q}^3_p)$ sampled according to $\nu_{r,s}$ and define square field $N_r[\phi^2_{r,s}]$ which is deterministic $S'(\mathbb{Q}^3_p)$ -valued function of $\phi_{r,s}$ given by

$$N_{r}[\phi_{r,s}^{2}](j) = Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}} \{Y_{2} : \phi_{r,s}^{2} : C_{r}(x) - Y_{0}L^{-2r[\phi]}\} j(x) d^{3}x$$

 Z_2 , Y_0 , Y_2 are parameters to be adjusted.

Our main result concerns the limit law of the pair $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ in $S'(\mathbb{Q}_p^3) \times S'(\mathbb{Q}_p^3)$ when $r \to -\infty$, $s \to \infty$ regardless of the order of limits. Will need approximate fixed point coupling

$$ar{g}_*=rac{p^\epsilon-1}{36L^\epsilon(1-p^{-3})}$$

・ロト ・ 西 ト ・ 田 ト ・ 日 ・ うへつ

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon(0, \epsilon_0], \exists [\phi^2] > 2[\phi], \exists$ functions $\mu(g), Y_0(g), Y_2(g)$ on interval $(\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}})$ such that if one sets $\mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g)$ and $Z_2 = L^{-([\phi^2] - 2[\phi])}$ then the law of $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ converges weakly and in the sense of moments to that of a pair $(\phi, N[\phi^2])$ such that:

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon(0, \epsilon_0], \exists [\phi^2] > 2[\phi], \exists \text{ functions}$ $\mu(g), Y_0(g), Y_2(g) \text{ on interval } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such that}$ if one sets $\mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g) \text{ and } Z_2 = L^{-([\phi^2] - 2[\phi])}$ then the law of $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ converges weakly and in the sense of moments to that of a pair $(\phi, N[\phi^2])$ such that:

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon(0, \epsilon_0], \exists [\phi^2] > 2[\phi], \exists$ functions $\mu(g), Y_0(g), Y_2(g)$ on interval $(\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}})$ such that if one sets $\mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g)$ and $Z_2 = L^{-([\phi^2] - 2[\phi])}$ then the law of $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ converges weakly and in the sense of moments to that of a pair $(\phi, N[\phi^2])$ such that:

 ∀k ∈ Z, (L^{-k[φ]}φ(L^k·), L^{-k[φ²]}N[φ²](L^k·)) ^d= (φ, N[φ²]).
 ⟨φ(1_{Z³_p}), φ(1_{Z³_p}), φ(1_{Z³_p}), φ(1_{Z³_p})⟩^T < 0 i.e., φ is non-Gaussian. Here 1_{Z³_p} is the indicator function of B(0, 1).

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon(0, \epsilon_0], \exists [\phi^2] > 2[\phi], \exists$ functions $\mu(g), Y_0(g), Y_2(g)$ on interval $(\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}})$ such that if one sets $\mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g)$ and $Z_2 = L^{-([\phi^2] - 2[\phi])}$ then the law of $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ converges weakly and in the sense of moments to that of a pair $(\phi, N[\phi^2])$ such that:

- 2 $\langle \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} < 0$ i.e., ϕ is non-Gaussian. Here $\mathbf{1}_{\mathbb{Z}_p^3}$ is the indicator function of $\overline{B}(0, 1)$.
- $(\mathbf{N}[\phi^2](\mathbf{1}_{\mathbb{Z}^3_p}), \mathbf{N}[\phi^2](\mathbf{1}_{\mathbb{Z}^3_p}))^{\mathrm{T}} = 1.$

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k}\langle \phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k}\langle \phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

For the *p*-adic BMS model we also proved $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$ as expected in Euclidean BMS model.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k}\langle \phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

For the *p*-adic BMS model we also proved $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$ as expected in Euclidean BMS model.

Not too far, if one sets $\epsilon = 1$, from 3D short-range Ising for which recent progress in conformal bootstrap gives $[\phi^2] - 2[\phi] = 0.3763...$ (Simmons-Duffin 2015).

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k}\langle \phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

For the *p*-adic BMS model we also proved $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$ as expected in Euclidean BMS model.

Not too far, if one sets $\epsilon = 1$, from 3D short-range Ising for which recent progress in conformal bootstrap gives $[\phi^2] - 2[\phi] = 0.3763...$ (Simmons-Duffin 2015).

The law $\nu_{\phi \times \phi^2}$ of $(\phi, N[\phi^2])$ is independent of g: universality

Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ independent of RG step L.

Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ independent of RG step *L*.

Two point functions given as distributions by

$$\langle \phi(x)\phi(y)
angle = rac{c_1}{|x-y|^{2[\phi]}}$$

 $\langle N[\phi^2](x) \ N[\phi^2](y)
angle = rac{c_2}{|x-y|^{2[\phi^2]}}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ independent of RG step *L*.

Two point functions given as distributions by

$$\langle \phi(x)\phi(y)
angle = rac{c_1}{|x-y|^{2[\phi]}}$$

 $\langle N[\phi^2](x) \ N[\phi^2](y)
angle = rac{c_2}{|x-y|^{2[\phi^2]}}$

Note that $3 - 2[\phi^2] = 3 - \frac{1}{3}\epsilon + o(\epsilon) - >$ still $L^{1, \text{loc}}$!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem 3: A.A., May 2015

Let ψ_i denote ϕ or $N[\phi^2]$. Then for every mixed correlation \exists smooth function $\langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle$ on $(\mathbb{Q}_p^3)^n \backslash \text{Diag}$ which is locally integrable (even on Diag) such that

$$\langle \psi_1(f_1)\cdots\psi_n(f_n)
angle = \int_{(\mathbb{Q}_p^3)^n\setminus\mathrm{Diag}}\langle \psi_1(z_1)\cdots\psi_n(z_n)
angle f_1(z_1)\cdots f_n(z_n)\ d^3z_1\cdots d^3z_n$$

for all test functions $f_1, \ldots, f_n \in S(\mathbb{Q}^3_p)$.

Theorem 3: A.A., May 2015

Let ψ_i denote ϕ or $N[\phi^2]$. Then for every mixed correlation \exists smooth function $\langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle$ on $(\mathbb{Q}_p^3)^n \setminus \text{Diag}$ which is locally integrable (even on Diag) such that

 $\langle \psi_1(f_1) \cdots \psi_n(f_n) \rangle = \\ \int_{(\mathbb{Q}_p^3)^n \setminus \text{Diag}} \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle f_1(z_1) \cdots f_n(z_n) \ d^3 z_1 \cdots d^3 z_n$

for all test functions $f_1, \ldots, f_n \in S(\mathbb{Q}^3_p)$.

Namely, $\nu_{\phi \times \phi^2}$ satisfies the DPC property or the analogue of Conj. 2.

9) Work in progress

Going towards a proof of the *p*-adic analogue of Conj. 3.

Going towards a proof of the *p*-adic analogue of Conj. 3.

Preliminary work done by Lerner and Missarov in early nineties.

Going towards a proof of the *p*-adic analogue of Conj. 3.

Preliminary work done by Lerner and Missarov in early nineties.

p-adic Möbius group: generated by isometries (for the ultrametric |x - y|, $x, y \in \mathbb{Q}_p^3$), scaling transformations $x \mapsto p^k x$, $k \in \mathbb{Z}$, and the unit-sphere inversion $J(x) = |x|^2 x$.

Going towards a proof of the *p*-adic analogue of Conj. 3.

Preliminary work done by Lerner and Missarov in early nineties.

p-adic Möbius group: generated by isometries (for the ultrametric |x - y|, $x, y \in \mathbb{Q}_p^3$), scaling transformations $x \mapsto p^k x$, $k \in \mathbb{Z}$, and the unit-sphere inversion $J(x) = |x|^2 x$.

Alternatively, one can define the absolute cross-ratio using the ultrametric, then $\mathcal{M}(\mathbb{Q}_p^3)$ is the group of bijections of $\widehat{\mathbb{Q}_p^3} = \mathbb{Q}_p^3 \cup \{\infty\}$ which preserve the cross-ratio.

Going towards a proof of the *p*-adic analogue of Conj. 3.

Preliminary work done by Lerner and Missarov in early nineties.

p-adic Möbius group: generated by isometries (for the ultrametric |x - y|, $x, y \in \mathbb{Q}_p^3$), scaling transformations $x \mapsto p^k x$, $k \in \mathbb{Z}$, and the unit-sphere inversion $J(x) = |x|^2 x$.

Alternatively, one can define the absolute cross-ratio using the ultrametric, then $\mathcal{M}(\mathbb{Q}_p^3)$ is the group of bijections of $\widehat{\mathbb{Q}_p^3} = \mathbb{Q}_p^3 \cup \{\infty\}$ which preserve the cross-ratio.

The AdS bulk is the tree $\mathbb T$ with the graph distance. Analogue of hyperbolic metric.

Mumford-Manin-Drinfeld Cross-Ratio Lemma

$$CR(x_1, x_2, x_3, x_4) := rac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|} = p^{-\delta(x_1 o x_2; x_3 o x_4)}$$

where $\delta(x_1 \to x_2; x_3 \to x_4)$ is the number of common edges in bi-infinite paths $x_1 \to x_2$ and $x_3 \to x_4$, counted positively if orientations agree and negatively otherwise.

Mumford-Manin-Drinfeld Cross-Ratio Lemma

$$CR(x_1, x_2, x_3, x_4) := rac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|} = p^{-\delta(x_1 o x_2; x_3 o x_4)}$$

where $\delta(x_1 \to x_2; x_3 \to x_4)$ is the number of common edges in bi-infinite paths $x_1 \to x_2$ and $x_3 \to x_4$, counted positively if orientations agree and negatively otherwise.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Using the cross-ratio lemma, one can again establish a one-to-one correspondence: $f \in \mathcal{M}(\mathbb{Q}_p^3) \leftrightarrow$ hyperbolic isometry of the bulk \mathbb{T} .

Mumford-Manin-Drinfeld Cross-Ratio Lemma

$$CR(x_1, x_2, x_3, x_4) := rac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|} = p^{-\delta(x_1 o x_2; x_3 o x_4)}$$

where $\delta(x_1 \to x_2; x_3 \to x_4)$ is the number of common edges in bi-infinite paths $x_1 \to x_2$ and $x_3 \to x_4$, counted positively if orientations agree and negatively otherwise.

Using the cross-ratio lemma, one can again establish a one-to-one correspondence: $f \in \mathcal{M}(\mathbb{Q}_p^3) \leftrightarrow$ hyperbolic isometry of the bulk \mathbb{T} .

Rigorous RG for space-dependent couplings in ACG 2013 -> space-dependent cut-offs -> Conj. 3. by showing equivalence of usual upper half-space cut-off with conformal ball cut-off.

The tree again

10) The last slide

10) The last slide

Cher Vincent,

10) The last slide

Cher Vincent,

Je te souhaite encore beaucoup d'années,

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Cher Vincent,

Je te souhaite encore beaucoup d'années, et encore beaucoup d'étudiants.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cher Vincent,

Je te souhaite encore beaucoup d'années, et encore beaucoup d'étudiants.

Joyeux Anniversaire!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>