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1 The Brydges-Mitter-Scoppola (BMS)

model in 3D

2 The p-adic hierarchical model



1) Heuristic definition of the BMS model

The BMS model is the family of probability measures on
S ′(R3) formally given by

1

Z
exp

(
−1

2
〈φ, (−∆)αφ〉 −

∫
R3

{
gφ(x)4 + µφ(x)2

}
d3x

)
Dφ

with fractional power of Laplacian α = 3+ε
4

, 0 < ε� 1.

Main focus: the scale invariant theory corresponding to a
nontrivial RG fixed point (BMS in CMP 2003).

Should correspond to critical scaling limit of long-range
three-dimensional Ising model with ferromagnetic interactions
Jx,y ∼ |x− y|−(d+σ), d = 3, σ = 3+ε

2
.
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2) Precise definition with Fourier cut-offs

Define continuous bilinear form C−∞ on S(R3) by

C−∞(f , g) =
1

(2π)3

∫
R3

f̂ (ξ)ĝ(ξ)

|ξ|3−2[φ]
d3ξ

where [φ] = 3−ε
4

is the scaling dimension of the field. Let
µC−∞ be the centered Gaussian measure with covariance C−∞.

Introduce mollifier ρUV: smooth function R3 → R, compact
support, O(3)-invariant,

∫
ρUV = 1.

Introduce volume cut-off function ρIR: smooth function
R3 → R, compact support, O(3)-invariant, nonnegative, equal
to 1 in neighborhood of origin.

Fix rescaling ratio L > 1, integer.
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For r ∈ Z (UV cut-off r → −∞), let
ρUV,r (x) = L−3rρUV(L−rx).

For s ∈ Z (IR cut-off s →∞), let ρIR,s(x) = ρIR(L−sx).
Let µCr be the law of φ ∗ ρUV,r for random φ ∈ S ′(R3) with
law C−∞.

Given bare ansatz (gr , µr )r∈Z, one has well defined probability
measures dνr ,s(φ) whose Radon-Nikodym derivative with
respect to dµCr (φ) is proportional to

exp

(
−
∫
R3

ρIR,s(x)
{
gr : φ4 : (x) + µr : φ2 : (x)

}
d3x

)
with Wick ordering relative to µCr .

The scale invariant BMS measure should be the weak limit
νφ = limr→−∞ lims→∞ νr ,s for a well chosen bare ansatz which
mimics the scaling limit of a critical theory on the unit lattice.



For r ∈ Z (UV cut-off r → −∞), let
ρUV,r (x) = L−3rρUV(L−rx).
For s ∈ Z (IR cut-off s →∞), let ρIR,s(x) = ρIR(L−sx).

Let µCr be the law of φ ∗ ρUV,r for random φ ∈ S ′(R3) with
law C−∞.

Given bare ansatz (gr , µr )r∈Z, one has well defined probability
measures dνr ,s(φ) whose Radon-Nikodym derivative with
respect to dµCr (φ) is proportional to

exp

(
−
∫
R3

ρIR,s(x)
{
gr : φ4 : (x) + µr : φ2 : (x)

}
d3x

)
with Wick ordering relative to µCr .

The scale invariant BMS measure should be the weak limit
νφ = limr→−∞ lims→∞ νr ,s for a well chosen bare ansatz which
mimics the scaling limit of a critical theory on the unit lattice.



For r ∈ Z (UV cut-off r → −∞), let
ρUV,r (x) = L−3rρUV(L−rx).
For s ∈ Z (IR cut-off s →∞), let ρIR,s(x) = ρIR(L−sx).
Let µCr be the law of φ ∗ ρUV,r for random φ ∈ S ′(R3) with
law C−∞.

Given bare ansatz (gr , µr )r∈Z, one has well defined probability
measures dνr ,s(φ) whose Radon-Nikodym derivative with
respect to dµCr (φ) is proportional to

exp

(
−
∫
R3

ρIR,s(x)
{
gr : φ4 : (x) + µr : φ2 : (x)

}
d3x

)
with Wick ordering relative to µCr .

The scale invariant BMS measure should be the weak limit
νφ = limr→−∞ lims→∞ νr ,s for a well chosen bare ansatz which
mimics the scaling limit of a critical theory on the unit lattice.



For r ∈ Z (UV cut-off r → −∞), let
ρUV,r (x) = L−3rρUV(L−rx).
For s ∈ Z (IR cut-off s →∞), let ρIR,s(x) = ρIR(L−sx).
Let µCr be the law of φ ∗ ρUV,r for random φ ∈ S ′(R3) with
law C−∞.

Given bare ansatz (gr , µr )r∈Z, one has well defined probability
measures dνr ,s(φ) whose Radon-Nikodym derivative with
respect to dµCr (φ) is proportional to

exp

(
−
∫
R3

ρIR,s(x)
{
gr : φ4 : (x) + µr : φ2 : (x)

}
d3x

)
with Wick ordering relative to µCr .

The scale invariant BMS measure should be the weak limit
νφ = limr→−∞ lims→∞ νr ,s for a well chosen bare ansatz which
mimics the scaling limit of a critical theory on the unit lattice.



For r ∈ Z (UV cut-off r → −∞), let
ρUV,r (x) = L−3rρUV(L−rx).
For s ∈ Z (IR cut-off s →∞), let ρIR,s(x) = ρIR(L−sx).
Let µCr be the law of φ ∗ ρUV,r for random φ ∈ S ′(R3) with
law C−∞.

Given bare ansatz (gr , µr )r∈Z, one has well defined probability
measures dνr ,s(φ) whose Radon-Nikodym derivative with
respect to dµCr (φ) is proportional to

exp

(
−
∫
R3

ρIR,s(x)
{
gr : φ4 : (x) + µr : φ2 : (x)

}
d3x

)
with Wick ordering relative to µCr .

The scale invariant BMS measure should be the weak limit
νφ = limr→−∞ lims→∞ νr ,s for a well chosen bare ansatz which
mimics the scaling limit of a critical theory on the unit lattice.



Conjecture 1:

Set [φ] = 3−ε
4

for ε positive and small.
Then there exists a nonempty interval I ⊂ (0,∞) and a function
µc : I → R such that for all g ∈ I , if one sets gr = L−r(3−4[φ])g
and µr = L−r(3−2[φ])µc(g), the weak limit νφ exists and is
non-Gaussian, translation-invariant, O(3)-invariant, OS posi-

tive, and scale-invariant with exponent [φ], i.e., λ[φ]φ(λ·) dd
= φ(·)

for all λ > 0.
Moreover, this limit is independent of L and g ∈ I as well as
the choice of functions ρUV, ρIR.

Measure constructed on finite torus by Mitter (∼ 2004) using
fixed point obtained by BMS, CMP 2003.
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3) Some definitions

A probability measure µ on S ′(R3) has the finite moment of
all orders (MAO) property if for all f ∈ S(R3) and all
p ∈ [0,∞), the function φ 7→ φ(f ) is in Lp(S ′(R3), µ).
The moments

Sn(f1, . . . , fn) = 〈φ(f1) · · ·φ(fn)〉 =

∫
S ′(R3)

φ(f1) · · ·φ(fn)dµ(φ)

are automatically continuous n-linear forms (Fernique 1967).

A probability measure µ is determined by correlations (DC) if
it is MAO and the only MAO measure with the same sequence
of moments Sn as µ is µ itself.
By the nuclear theorem Sn can be seen as an element of
S ′(R3n).
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A DC measure µ is determined by pointwise correlations
(DPC) if

1 For all n, Sn ∈ S ′(R3n) has singular support in the big
diagonal Diagn = {(x1, . . . , xn) ∈ R3n|∃i 6= j , xi = xj}.
This defines the smooth pointwise correlations
Sn(x1, . . . , xn) = 〈φ(x1) · · ·φ(xn)〉 on R3n\Diagn.

2 The pointwise correlations are L1,loc on the big diagonal.

3 For all n, and all test functions f1, . . . , fn ∈ S(R3),

〈φ(f1) · · ·φ(fn)〉 =∫
R3n\Diagn

〈φ(x1) · · ·φ(xn)〉f (x1) · · · f (xn)d3x1 · · · d3xn.

Conjecture 2:

νφ is DPC.
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4) Conformal invariance

Conjecture 3:

The pointwise correlations of νφ satisfy

〈φ(x1) · · ·φ(xn)〉 =

(
n∏

i=1

|Jf (xi)|
[φ]
3

)
× 〈φ(f (x1)) · · ·φ(f (xn))〉

for all f ∈ M(R3) and all collections of distinct points in
R3\{f −1(∞)}.

Here, M(R3) is the Möbius group of global conformal maps
and Jf (x) denotes the Jacobian of f at x .
Conj. 3 is a precise formulation of predictions in “Conformal
invariance in the long-range Ising model” by Paulos, Rychkov,
van Rees and Zan, arXiv:1509.00008[hep-th] − >
Higher-dimensional conformal bootstrap.
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5) Möbius group from the AdS/CFT point of view

Let R̂3 = R3 ∪ {∞} ' S3. M(R3) is the group of bijective

transformations of R̂3 generated by isometries, scaling
transformations, and the unit-sphere inversion J(x) = |x |−2x .
Equivalently, it is the invariance group of the absolute
cross-ratio

CR(x1, x2, x3, x4) =
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

.

Conformal ball model: R̂3 ' S3 seen as boundary of unit ball
B4 with metric ds = 2|dx |

1−|x |2 .

Upper half-space model: R3 seen as boundary of
H4 = R3 × (0,∞) with metric ds = |dx |

x4
.

One-to-one correspondence: f ∈M(R3) ↔ hyperbolic
isometry of the bulk B4 or H4.
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1 The Brydges-Mitter-Scoppola (BMS)

model in 3D

2 The p-adic hierarchical model



1) Hierarchical continuum

Let p be an integer > 1 (in fact a prime number).

Let Lk , k ∈ Z, be the set of boxes
∏d

i=1

[
aip

k , (ai + 1)pk
)

for
a1, . . . , ad ∈ N. The cubes in Lk form a partition of the
octant [0,∞)d .

Then T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree organized in layers or generations Lk :
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Now forget about [0,∞)d and Rd .
Define the substitute for the continuum Qd

p := set of leafs at
infinity “L−∞”.

More precisely, this is the set of upward paths in the tree.

A path representing some x ∈ Qd
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A point x ∈ Qd
p encoded by sequence (an)n∈Z,

an ∈ {0, 1, . . . , p − 1}d .
Let 0 ∈ Qd

p correspond to sequence with all digits equal to
zero.

Caution! perverse notation ahead
an represents local coordinates of L−n−1 box inside L−n box.
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Likewise p−1x is downward shift and so on for defining pkx ,
k ∈ Z.
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2) Distance

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the bifurcation between the two paths occurs

also define |x | := |x − 0|. Because of the strange notation

|px | = p−1|x |



2) Distance

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the bifurcation between the two paths occurs

also define |x | := |x − 0|. Because of the strange notation

|px | = p−1|x |



2) Distance

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the bifurcation between the two paths occurs

also define |x | := |x − 0|. Because of the strange notation

|px | = p−1|x |



2) Distance

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the bifurcation between the two paths occurs

also define |x | := |x − 0|.

Because of the strange notation

|px | = p−1|x |



2) Distance

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the bifurcation between the two paths occurs

also define |x | := |x − 0|. Because of the strange notation

|px | = p−1|x |



Closed balls ∆ of radius pk correspond to points x ∈ Lk



Closed balls ∆ of radius pk correspond to points x ∈ Lk



3) Lebesgue measure

Metric space Qd
p − > Borel σ-algebra − > Lebesgue measure

ddx which gives measure pdk for closed ball of radius pk .

Construction: take product of uniform probability measures on
({0, 1, . . . , p− 1}d)N for B(0, 1) and similarly for other balls of
radius 1, then collate.
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4) Massless Gaussian measure

To any G group of offsprings of site z ∈ Lk+1 associate
centered Gaussian vector (ζx)x∈G with pd × pd covariance
matrix with 1− p−d on diagonal and −p−d everywhere else.
These vectors are set to be independent for different groups or
layers. Note that

∑
x∈G ζx = 0 a.s.
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Ancestor function: for k < k ′, x ∈ Lk , let anck ′(x) be the
ancestor in Lk ′ .

Likewise for anck ′(x) for x ∈ Qd
p .

Massless Gaussian field φ(x), x ∈ Qd
p with engineering scaling

dimension [φ] is

φ(x) =
∑
k∈Z

p−k[φ]ζanck (x)

〈φ(x)φ(y)〉 =
c

|x − y |2[φ]

only formal since φ not defined pointwise. Need random
distributions.
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5) Test functions

f : Qd
p → R smooth iff locally constant

S(Qd
p) := {smooth compactly supported functions}

= ∪n∈NS−n,n(Qd
p)

where for t− ≤ t+, St−,t+(Qd
p) is space of functions which are

constant in closed boxes of radius pt− and support in
B(0, pt+).

Topology generated by the set of all seminorms.
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6) Distributions

S ′(Qd
p) is topological dual with weak-∗ topology.

S(Qd
p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology − > Polish space.

Probability theory on S ′(Qd
p) is very nice!
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1 Prokhorov’s Theorem

2 Bochner’s Theorem

3 Levy’s Continuity Theorem

4 Uniform convergence of characteristic functions in
complex neighborhood of origin implies weak convergence
of probability measures (use moments or Vitali’s
Theorem).

5 Analytic RG and dynamical systems methods we
introduced deliver exactly that.

6 S ′(Qd
p)× S ′(Qd

p) ' S ′(Qd
p) so same tools work for joint

law of pair of distributional random fields, e.g., (φ,N[φ2]).
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7) p-adic BMS model

d = 3, [φ] = 3−ε
4

, L = pl RG step

r ∈ Z UV cut-off, r → −∞

s ∈ Z IR cut-off, s →∞

Cut-off Gaussian measure µCr is law of

φr (x) =
∞∑

k=l r

p−k[φ]ζanck (x)

Sample paths are functions that are locally constant at scale
Lr .
Gaussian measures are scaled copies of each other.
If law of φ(·) is µC0 , then law of L−r [φ]φ(Lr ·) is µCr .
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Introduce fixed parameters g , µ and cut-off dependent
couplings gr = L−(3−4[φ])rg and µr = L−(3−2[φ])rµ.

Let Λs = B(0, Ls), volume or IR cut-off.

Let

Vr ,s(φ) =

∫
Λs

{gr : φ4 :Cr (x) + µr : φ2 :Cr (x)}d3x

and define the probability measure

dνr ,s(φ) =
1

Zr ,s
e−Vr,s(φ)dµCr (φ)
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Let φr ,s random variable in S ′(Q3
p) sampled according to νr ,s

and define square field Nr [φ
2
r ,s ] which is deterministic

S ′(Q3
p)-valued function of φr ,s given by

Nr [φ
2
r ,s ](j) = Z r

2

∫
Q3

p

{Y2 : φ2
r ,s :Cr (x)− Y0L

−2r [φ]} j(x) d3x

Z2, Y0, Y2 are parameters to be adjusted.

Our main result concerns the limit law of the pair
(φr ,s ,Nr [φ

2
r ,s ]) in S ′(Q3

p)× S ′(Q3
p) when r → −∞, s →∞

regardless of the order of limits.
Will need approximate fixed point coupling

ḡ∗ =
pε − 1

36Lε(1− p−3)
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8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013

∃ρ, ∃L0, ∀L ≥ L0, ∃ε0 > 0, ∀ε(0, ε0], ∃[φ2] > 2[φ], ∃ functions

µ(g), Y0(g), Y2(g) on interval (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ) such that

if one sets µ = µ(g), Y0 = Y0(g), Y2 = Y2(g) and Z2 =
L−([φ2]−2[φ]) then the law of (φr ,s ,Nr [φ

2
r ,s ]) converges weakly and
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Mixed correlations satisfy in sense of distributions

〈φ(L−kx1) · · ·φ(L−kxn)N[φ2](L−ky1) · · ·N[φ2](L−kym)〉

= L−(n[φ]+m[φ2])k〈φ(x1) · · ·φ(xn)N[φ2](y1) · · ·N[φ2](ym)〉

For the p-adic BMS model we also proved
[φ2]− 2[φ] = 1

3
ε + o(ε) as expected in Euclidean BMS model.

Not too far, if one sets ε = 1, from 3D short-range Ising for
which recent progress in conformal bootstrap gives
[φ2]− 2[φ] = 0.3763 . . . (Simmons-Duffin 2015).

The law νφ×φ2 of (φ,N[φ2]) is independent of g : universality
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Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under action of pZ

instead of just LZ. Moreover, µ(g) and [φ2] independent of RG
step L.

Two point functions given as distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |2[φ2]

Note that 3− 2[φ2] = 3− 1
3
ε + o(ε) − > still L1,loc !
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Theorem 3: A.A., May 2015

Let ψi denote φ or N[φ2]. Then for every mixed correlation
∃ smooth function 〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is
locally integrable (even on Diag) such that

〈ψ1(f1) · · ·ψn(fn)〉 =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).

Namely, νφ×φ2 satisfies the DPC property or the analogue of
Conj. 2.
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9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.

Preliminary work done by Lerner and Missarov in early nineties.

p-adic Möbius group: generated by isometries (for the
ultrametric |x − y |, x , y ∈ Q3

p), scaling transformations
x 7→ pkx , k ∈ Z, and the unit-sphere inversion J(x) = |x |2x .

Alternatively, one can define the absolute cross-ratio using the
ultrametric, then M(Q3

p) is the group of bijections of

Q̂3
p = Q3

p ∪ {∞} which preserve the cross-ratio.

The AdS bulk is the tree T with the graph distance. Analogue
of hyperbolic metric.



9) Work in progress

Going towards a proof of the p-adic analogue of Conj. 3.

Preliminary work done by Lerner and Missarov in early nineties.
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Mumford-Manin-Drinfeld Cross-Ratio Lemma

CR(x1, x2, x3, x4) :=
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

= p−δ(x1→x2;x3→x4) ,

where δ(x1 → x2; x3 → x4) is the number of common edges
in bi-infinite paths x1 → x2 and x3 → x4, counted positively if
orientations agree and negatively otherwise.

Using the cross-ratio lemma, one can again establish a
one-to-one correspondence: f ∈M(Q3

p) ↔ hyperbolic
isometry of the bulk T.

Rigorous RG for space-dependent couplings in ACG 2013 − >
space-dependent cut-offs − > Conj. 3. by showing equivalence
of usual upper half-space cut-off with conformal ball cut-off.
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The tree again
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et encore beaucoup d’étudiants.

Joyeux Anniversaire!
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