On a power counting theorem for a $p^{2a}\varphi^4$ tensor field theory

Joseph Ben Geloun

Max-Planck Institute for Gravitational Physics Albert Einstein Institute

based on arXiv:1507.00590

Constructive Field Theory: from Condensed Matter to Quantum Gravity. in honor of Vincent Rivasseau

Institut Henri Poincaré Paris, France November 25, 2015

Introduction

2 The $p^{2a}\varphi^4$ model

- The action
- Progrator and Feynman graphs
- Amplitudes
- Multi-scale analysis

Introduction

2 The $p^{2a}\varphi^4$ model

- The action
- Progrator and Feynman graphs
- Amplitudes
- Multi-scale analysis

Quantum Geometry by Colored Tensor Models

- Tensor Models (TM) of rank D: Tools for randomizing geometry in dimension D.
- Case D = 2: Matrix Models and QG in 2D.
- Basic building blocks (D-1)-simplexes & Interaction forms a D-simplex; [Ambjorn et
- al. '91, Boulatov-Ooguri '92]; Group Field Theory [Oriti, '05-].

• '10 Gurau's 1/N expansion for colored TM [Gurau, AHP, '11] 3D:

- triangulate mo' regular objects (pseudo-manifolds) [Gurau, CMP '11]
- $\exists 1/N$ and Leading graphs triangulate only spheres in any D [Gurau, AHP '11; Bonzom, Gurau, Rivasseau '15]
- have computable phase transition, and critical exponent [Bonzom, Gurau, Riello, Rivasseau, NPB, '11];
- At the effective level, they define renormalizable field theories called TFTs or TGFTs [BG & Rivasseau, '11; Carrozza, Oriti, Rivasseau '12; Samary & Vignes-Tourneret '12; BG, '13—; Avohou, Benedetti, Lahoche, Krajewski, Martini, Toriumi].

Quantum Geometry by Colored Tensor Models

- Tensor Models (TM) of rank D: Tools for randomizing geometry in dimension D.
- Case D = 2: Matrix Models and QG in 2D.
- Basic building blocks (D-1)-simplexes & Interaction forms a D-simplex; [Ambjorn et
- al. '91, Boulatov-Ooguri '92]; Group Field Theory [Oriti, '05-].
- '10 Gurau's 1/N expansion for colored TM [Gurau, AHP, '11] 3D:

- triangulate mo' regular objects (pseudo-manifolds) [Gurau, CMP '11]
- $\exists 1/N$ and Leading graphs triangulate only spheres in any *D* [Gurau, AHP '11; Bonzom, Gurau, Rivasseau '15]
- have computable phase transition, and critical exponent [Bonzom, Gurau, Riello, Rivasseau, NPB, '11];
- At the effective level, they define renormalizable field theories called TFTs or TGFTs [BG & Rivasseau, '11; Carrozza, Oriti, Rivasseau '12; Samary & Vignes-Tourneret '12; BG, '13—; Avohou, Benedetti, Lahoche, Krajewski, Martini, Toriumi].

Quantum Geometry by Colored Tensor Models

- Tensor Models (TM) of rank D: Tools for randomizing geometry in dimension D.
- Case D = 2: Matrix Models and QG in 2D.
- Basic building blocks (D-1)-simplexes & Interaction forms a D-simplex; [Ambjorn et
- al. '91, Boulatov-Ooguri '92]; Group Field Theory [Oriti, '05-].
- '10 Gurau's 1/N expansion for colored TM [Gurau, AHP, '11] 3D:

- triangulate mo' regular objects (pseudo-manifolds) [Gurau, CMP '11]
- $\exists 1/N$ and Leading graphs triangulate only spheres in any D [Gurau, AHP '11; Bonzom, Gurau, Rivasseau '15]
- have computable phase transition, and critical exponent [Bonzom, Gurau, Riello, Rivasseau, NPB, '11];
- At the effective level, they define renormalizable field theories called TFTs or TGFTs [BG & Rivasseau, '11; Carrozza, Oriti, Rivasseau '12; Samary & Vignes-Tourneret '12; BG, '13—; Avohou, Benedetti, Lahoche, Krajewski, Martini, Toriumi].

Escaping from the branch polymer phase

• TM is a rich framework.

• Explore exotic models in order to resum more contributions and escape the BP phase: the Enhanced TM program [Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps, Bonzom, Delepouve & Rivasseau, NPB 2015]

• Caveat: It becomes difficult to identify a proper geometrical interpretation.

But not in the QFT setting: they belong to the theory space!

• Today, in the field theory setting, I will present a class of models which enhance terms which are ordinarily suppressed in power counting.

Introduction

2 The $p^{2a}\varphi^4$ model

- The action
- Progrator and Feynman graphs
- Amplitudes
- Multi-scale analysis

Tensorial field theory on $U(1)^d$

- $\phi: U(1)^d \to \mathbb{C}$, and its Fourier modes ϕ_{P} , with $\mathsf{P} = (p_1, p_2, \dots, p_d)$, $p_k \in \mathbb{Z}$.
- The action:

$$S[\bar{\phi},\phi] = \sum_{\mathbf{P}} (\bar{\phi}_{\mathbf{P}} \cdot (\sum_{i=1}^{d} p_{i}^{2}) \cdot \phi_{\mathbf{P}}) + \mu \sum_{\mathbf{P}} \bar{\phi}_{\mathbf{P}} \phi_{\mathbf{P}} + S^{\text{int}}[\bar{\phi},\phi].$$
(1)

A new tensorial field theory on $U(1)^d$

• Interaction part: NONLOCAL ! Given $a \in (0, \infty)$,

$$S^{\text{int}}\left[\bar{\phi},\phi\right] = \frac{\lambda}{2} \operatorname{Tr}_{4}(\phi^{4}) + \frac{\eta}{2} \operatorname{Tr}_{4}(\rho^{2a} \phi^{4}),$$

$$\operatorname{Tr}_{4}(\phi^{4}) := \operatorname{Tr}_{4;1}(\phi^{4}) + \operatorname{Sym}(1 \to 2 \to \dots \to d),$$

$$\operatorname{Tr}_{4}(\rho^{2a} \phi^{4}) := \operatorname{Tr}_{4;1}(\rho_{1}^{2a} \phi^{4}) + \operatorname{Sym}(1 \to 2 \to \dots \to d),$$
(2)

and, in rank d = 3 and d = 4,

$$\operatorname{Tr}_{4;1}(\phi^{4}) = \sum_{p_{i}, p_{i}' \in \mathbb{Z}} \phi_{123} \,\bar{\phi}_{1'23} \,\phi_{1'2'3'} \,\bar{\phi}_{12'3'} , \\ \operatorname{Tr}_{4;1}(p_{1}^{2a} \,\phi^{4}) = \sum_{p_{i}, p_{i}' \in \mathbb{Z}} \left(p_{1}^{2a} + p_{1}'^{2a} \right) \phi_{123} \,\bar{\phi}_{1'23} \,\phi_{1'2'3'} \,\bar{\phi}_{12'3'} ,$$

$$(3)$$

• Feynman graphs: in rank d = 3 (left) and d = 4 (right)

Amplitudes and slice decomposition

• Graph amplitudes: \mathcal{G} with set \mathcal{V} of vertices (with $V = |\mathcal{V}|$) and set \mathcal{L} of propagator lines (with $L = |\mathcal{L}|$)

$$A_{\mathcal{G}} = \sum_{p_{\nu;s}} \prod_{l \in \mathcal{L}} C_l(\{p_{\nu(l)}\}; \{p'_{\nu'(l)}\}) \prod_{\nu \in \mathcal{V}} (-V_{4;\nu}(\{p_{\nu;s}\})).$$
(4)

• Slice decomp.:

$$\widetilde{C}(\{p_{s}\}) = \int_{0}^{\infty} d\alpha \ e^{-\alpha(\sum_{s} p_{s}^{2} + \mu)} = \sum_{i=0}^{\infty} C_{i}(\{p_{s}\}),$$

$$C_{i}(\{p_{s}\}) = \int_{M^{-2(i+1)}}^{M^{-2i}} d\alpha e^{-\alpha(\sum_{s} p_{s}^{2} + \mu)} \leq KM^{-2i} e^{-\delta M^{-i}(\sum_{s} |p_{s}| + \mu)},$$
(5)

Multi-scale analysis and Optimization

Given f, among the lines l ∈ f, use the line l_f with i_f = min_{l∈f} i_l = i_f, which will generate the lowest factor M^{i_f}. Call i_f, the face scale index of f.
To optimize the products of the vertex kernels: we must target, in each factor of the product of the vertex kernels, the term p_f generating after summation a product of M^{i_f(2aα+1)} with the largest possible power.

(6)

Multi-scale analysis and Optimization

$$\begin{aligned} A_{\mathcal{G}} &= \sum_{\mu} A_{\mathcal{G};\mu} , \qquad A_{\mathcal{G};\mu} = \sum_{p_{v;s}} \prod_{l \in \mathcal{L}} C_{i_l}(\{p_{v(l)}\}; \{p'_{v'(l)}\}) \prod_{v \in \mathcal{V}} (-V_{4;v}(\{p_{v;s}\})), \\ |A_{\mathcal{G};\mu}| &\leq \kappa(\lambda) \prod_{l \in \mathcal{L}} M^{-2i_l} \sum_{p_{f_s}} \prod_{f_s \in \mathcal{F}_{int}} e^{-\delta(\sum_{l \in f_s} M^{-i_l})|p_{f_s}|} \prod_{s=1}^d \prod_{v_s \in \mathcal{V}_s} [1 + \tilde{\eta}(\varepsilon \, \tilde{p}^{\, 2a})_{v_s}], \end{aligned}$$

$$\varepsilon_{v_s f_{s'}} = \begin{cases} 1, & \text{if } s = s' \text{ and if } v_s \in f_s, \\ 0, & \text{otherwise.} \end{cases}$$
(6)

• Given f, among the lines $l \in f$, use the line l_f with $i_{l_f} = \min_{l \in f} i_l = i_f$, which will generate the lowest factor M^{i_f} . Call i_f , the face scale index of f.

• To optimize the products of the vertex kernels: we must target, in each factor of the product of the vertex kernels, the term p_f generating after summation a product of $M^{i_f(2a\alpha+1)}$ with the largest possible power.

Multi-scale analysis and Optimization

 $\varepsilon_{v_s f_{s'}} = \begin{cases} 1, & \text{if } s = s' \text{ and if } v_s \in f_s, \\ 0, & \text{otherwise.} \end{cases}$ (6)

• Given f, among the lines $l \in f$, use the line l_f with $i_{l_f} = \min_{l \in f} i_l = i_f$, which will generate the lowest factor M^{i_f} . Call i_f , the face scale index of f.

• To optimize the products of the vertex kernels: we must target, in each factor of the product of the vertex kernels, the term p_f generating after summation a product of $M^{i_f(2a\alpha+1)}$ with the largest possible power.

Multi-scale analysis: Optimization

• Investigate the combinatorics of the ε matrix.

 $i_{f_{(1),1}} \ge i_{f_{(1),2}} \ge \dots$, $i_{f_{(2),1}} \ge i_{f_{(2),2}} \ge \dots$, etc...

	$V_{1}^{(1)}$	$V_{2}^{(1)}$		$V_{k_1}^{(1)}$	$V_1^{(2)}$		$V_{k_2}^{(2)}$	
$f_{(1),1}$	1	1	0	0	x	х	x	x
$f_{(1),2}$	0	1	0	0	x	х	x	x
$f_{(1),3}$	0	1	0	1	x	X	x	x
$f_{(2),1}$	x	x	X	x	1	0	0	x
$f_{(2),2}$	x	x	х	x	0	1	1	x
f _{(2),3}	x	х	X	x	0	0	0	x

- Start with the face $f_{s;1}$, and count $\varrho_{f_{s;1}} = \sum_{l} \varepsilon_{v_{s,l}f_{s,1}}$, i.e. the number of vertices $v_{s;l}$ such that $\varepsilon_{v_{s;l}f_{s;1}} = 1$. Define

$$\varrho(\mathcal{G}) = \sum_{s} \sum_{f_{s;k}} \varrho_{f_{s;k}} \,. \tag{8}$$

• $\varrho(\mathcal{G}) \leq V(\mathcal{G})$

(7)

Power counting theorem

Then

$$|A_{\mathcal{G};\boldsymbol{\mu}}| \leq \kappa_2 \prod_{l \in \mathcal{L}} M^{-2i_l} \prod_{f_s \in \mathcal{F}_{int}} M^{i_f_s(2a\varrho_{f_s}+1)}, \qquad (9)$$

Power counting

Let $A_{\mathcal{G};\mu}$ be the amplitude associated with the graph \mathcal{G} of the $p^{2a}\varphi_d^4$ -model in the multi-scale index μ , then there exists a constant κ depending on the graph such that

$$|A_{\mathcal{G};\boldsymbol{\mu}}| \leq \kappa \prod_{(i,k)\in\mathbb{N}^2} M^{\omega_{\mathrm{d}}(G_k^i)},\tag{10}$$

where G_k^i are quasi-local subgraphs and

$$\omega_{\mathrm{d}}(G_k^i) = -2L(G_k^i) + F_{\mathrm{int}}(G_k^i) + 2a\varrho(G_k^i).$$
(11)

• $a \rightarrow 0$, one recovers the usual power counting for tensorial field theory over U(1).

• $2a\varrho(G_k^i)$ enhances the divergence degree.

Properties

• Non-melonic graphs might diverge and can even dominate melonic ones.

Figure: Two rank 3 4-point graphs: G_1 is a not a melon and G_2 is.

Example: Non-melonic 4-point graph \mathcal{G}_1 with (superficial) degree of divergence:

$$\omega_{\rm d}(\mathcal{G}_1) = -2 \times 2 + 1 + 2a \times 2 = 4a - 3 \tag{12}$$

which is strictly positive, whenever $a > \frac{3}{4}$. The 4-point melonic graph \mathcal{G}_2 in the same figure, one finds

 $\omega_{\rm d}(\mathcal{G}_2)=-2\times 2+2=-2<0$

which implies a convergent amplitude.

Introduction

2 The $p^{2a}\varphi^4$ model

- The action
- Progrator and Feynman graphs
- Amplitudes
- Multi-scale analysis

Conclusion

- A new type of Tensorial Field Theory incorporating Laplacian on the interaction.
- These terms appear naturally in the expansion of the Functional Renormalization Group Equations for TFTs.
- Result: The ordinary suppressed terms become enhanced.
- Future investigations:
- How is this useful to the continuum limit?
- Towards new classes of (just) renormalizable models?

Thank You For Your Attention!

Conclusion

- A new type of Tensorial Field Theory incorporating Laplacian on the interaction.
- These terms appear naturally in the expansion of the Functional Renormalization Group Equations for TFTs.
- Result: The ordinary suppressed terms become enhanced.
- Future investigations:
- How is this useful to the continuum limit?
- Towards new classes of (just) renormalizable models?

Thank You For Your Attention!