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Charles Augustin de Coulomb 1736 – 1806

Les Sciences sont des monumens consacrés au bien public; chaque
citoyen leur doit un tribut proportionné à sès talens. Tandis que les
grands hommes, portés au sommet de l’édifice, tracent et élèvent
les étages supérieurs, les artistes ordinaires répandus dans les
étages inférieurs, ou cachés dans l’obscurité des fondemens,
doivent seulement chercher à perfectionner ce que des mains plus
habiles ont créé.



2D Coulomb gas

I charged particle (x , σ)

I x ∈ Λ, 2d lattice with periodic bc

I σ = ±1

I pairwise interaction σσ′(−∆)−1
x ,x ′

I configuration ω = (xi , σi )i=1,...,nω

I ω has energy HΛ(ω) = 1
2

∑nω
i ,j=1 σiσj (−∆)−1

x ,y

I ZΛ(β, z) = limm2→0

∑
ω∈Ω

zn
ω

nω! e−βHΛ(ω).
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I Two oppositely charged test particles

p1 = (a, η), p2 = (b,−η),

are immersed in the system.

I Z p1,p2

Λ (β, z) =
∑

ω∈Ω
zn
ω

nω! e−βHΛ(ω∧{p1,p2})

I define ρη(a− b) = limΛ→∞
Z

p1,p2
Λ (β,z)

ZΛ(β,z)

I ρη(a− b) is e−βδ(Energy).
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Debye and Hückel 1923



Theorem (Wei-Shih Yang 1987)

For the grand canonical Coulomb system on R2 with β small
depending in an implicit way on z, ρη(a, b) decays exponentially to
ρη(a)ρη(b) as |a− b| → ∞.

Open problems: (1) implicit hypothesis on z ; (2) free boundary
conditions to relate to Fröhlich results; (3) extend range of β (4)
β < KT transition for lattice model?

Theorem (Fröhlich-Spencer 1981)

For the Coulomb system on Z2 exponential screening of fractional
charges does not hold for β large.

Fröhlich, J. (1976). Classical and quantum statistical mechanics in one and two dimensions: two-component
Yukawa- and Coulomb systems.
Comm. Math. Phys., 47(3):233–268

Yang, W.-S. (1987). Debye screening for two-dimensional Coulomb systems at high temperatures.
J. Statist. Phys., 49:1–32

Fröhlich, J. and Spencer, T. (1981). The Kosterlitz-Thouless transition in two-dimensional abelian spin systems
and the Coulomb gas.
Comm. Math. Phys., 81(4):527–602



KT Picture

βeff := where trajectories cross horizontal axis.

ρ(a− b) decays as |a− b|−2κ for η ∈ (0, 1
2 ] and βeff ≥ 8π.

κ = βeff
4π η

2 with log corrections for βeff = 8π.



Berezinskĭı, V. L. (1970). Destruction of long-range order in one-dimensional and two-dimensional systems having a
continuous symmetry group. I. Classical systems.
Ž. Èksper. Teoret. Fiz., 59:907–920

Kosterlitz, M. and Thouless, D. J. (1973). Ordering, metastability and phase transitions in two-dimensions.
J. Phys. C, 6:1181–1203

Kosterlitz, J. M. (1974). The critical properties of the two-dimensional xy model.
Journal of Physics C: Solid State Physics, 7(6):1046



Theorem (Pierluigi Falco, 2013)

KT picture, including differential equations
for trajectories, holds with explicit log
corrections to κ for βeff = 8π and z small.

The FS result was improved to βeff > 8π.

Falco, P. (2012). Kosterlitz-Thouless transition line for the two dimensional Coulomb gas.
Comm. Math. Phys., 312(2):559–609

Falco, P. (2013). Critical exponents of the two dimensional coulomb gas at the Berezinskii-Kosterlitz-Thouless
transition.
http://arxiv.org/abs/1311.2237

Marchetti, D. H. U. and Klein, A. (1991). Power-law falloff in two-dimensional Coulomb gases at inverse
temperature β > 8π.
J. Statist. Phys., 64(1-2):135–162



Sine–Gordon transformation

I Gaussian field:

E[ϕxϕy ] = (−∆)−1(x , y)

I define phase: ex ,σ = e iσ
√
βϕx

I Sine–Gordon transformation:

ZΛ(β, z) = E e
∑

x,σ zex,σ︸ ︷︷ ︸
ideal gas, activity zex,σ

I

ρη(a− b) = lim
Λ→∞

〈ea,ηeb,−η〉Λ.
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I Generating function in torus of side LR

ΩR(J,Λ) = Ee
∑

x,σ(zex,σ+Jx,σex,ση)

I rescale ϕ by
√

1− s

I β in ex ,σ becomes α2 = β(1− s)

ΩR(J,Λ) = E
[
eV,0(J,ϕ)

]
V,0(J, ϕ), =

∑
x ,µ

s

2
(∂µϕx )2

︸ ︷︷ ︸
counterterm

+
∑
x ,σ

(zex ,σ + Jx ,σex ,ση)

Dropping terms that cancel with denominator
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I RG: ϕ = ζ1 + · · ·+ ζR

I Ej integrates out the fluctuation field ζj .

I Starting with Ω0(J, ϕ) = eV,0(J,ϕ),

Ωj+1(J, ϕ) = Ej [Ωj (J, ϕ+ ζj )]

constructs ΩR(J, ϕ)
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I Ej integrates out the fluctuation field ζj .
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Begin definition of RG:

Ej

(
sj+1, zj+1,Zj+1, Z̄j+1,Kj+1

)

Ωj Ωj+1

(
sj , zj ,Zj , Z̄j ,Kj

)
RG

I bulk coupling constants sj , zj

I Real valued observable coupling constants Zj , Z̄j

I Kj in Banach space



Definition of vertical arrows: step 1

Given (sj , zj ,Zj , Z̄j ) ∈ R4, define functions of Φ = (J, ϕ).

V0,j (Φ,B) =
∑

x∈B,µ

sj

2
(∂µϕx )2 + L−2j

∑
x∈B,σ=±

zj ex ,σ

V1,j (Φ,B) = L−2j
∑

x∈B,σ=±
Zj Jx ,σex ,ση

+ L−2j
∑

x∈B,σ=±
Z̄j Jx ,σex ,η̄, η̄ = 1− η.

V,j (Φ,B) = V0,j (Φ,B) + V1,j (Φ,B)



Definition of vertical arrows: step 2

Let

Uj (Φ,B) = V,j (Φ,B) + W,j (Φ,B)

where W,j (Φ,B) is another explicit function of Φ = (J, ϕ) defined
by (sj , zj ,Zj , Z̄j ).

It is given by a LARGE formula obtained from second order
perturbation theory.



Definition of vertical arrows

Given Kj : X 7→ function of (ϕx , Jx )x∈X�

Ωj is expressed in terms of (Uj ,Kj )

using

Ωj (Φ,Λ) =
∑

X∈Pj

eU j (Φ,Λ\X )
∏

Y∈Cj (X )

K j (Φ,Y ).

Kj is there to include the remainder after second order
perturbation theory.



Summary, so far

Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)
I Uj determined by coupling constants (sj , zj ,Zj , Z̄j )

I Ωj (Φ,Λ) =
∑

X∈Pj
eUj (Φ,Λ\X )

∏
Y∈Cj (X ) Kj (Φ,Y ),



Theorem (∃ RG)

For all j such that (sj , zj ) is small, Kj is O(sj , zj )
3 uniformly in j,

and (sj , zj ) follows the KT picture:

sj+1≈sj − az2
j , zj+1≈L2e−

α2

2
Var(ζj )[zj − bsj zj ]

Theorem (Best choice of s)

For α2 = 8π and z0 = z small, there is a unique s0 = s0(z) such
that (sj , zj ,Kj ) is in the domain of RG for all scales j and
(sR , zR ,KR) tends to zero in the infinite volume limit R →∞.

zR → 0 means there are no monopoles at macroscopic scales.
sR → 0 means that dipoles, quadrupoles, . . . absorbed into
gaussian αϕ.
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sj+1≈sj − az2
j , zj+1≈L2e−

α2

2
Var(ζj )[zj − bsj zj ]

Since Var(ζj ) ∼ 1
2π log L as j →∞,

L2e−
α2

2
Var(ζj ) ∼ L2−α

2

4π

So if

α2 = 8π, KT point

then zj is marginal.

To have α2 = 8π, by the definition α2 = (1− s0(z))β, get formula
for KT critical (β, z) line

β =
8π

1− s0(z)
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Calculation of ρ(a, b)

After R steps Λ becomes a single block so that

ΩR(Φ,Λ) = eUR (Φ,Λ) + KR(Φ,Λ).

Put this into

ρη(x , y) =
1

ΩR(Φ,Λ)

∂2ΩR(Φ,Λ)

∂Jx∂Jy

∣∣∣
J=0

.

In the infinite volume limit R →∞, KR becomes zero and makes
no contribution.

ρ(a, b) is completely determined by the double derivative of W,R

and the (s, z ,Z , Z̄ ) flow.



Recall the magenta arrow

Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)



Part of definition of (Uj ,Uj+1,Kj) 7→ Kj+1

Ωj =∑
X∈Pj

eUj (Φ,Λ\X )
∏

Y∈Cj (X )

Kj (Φ,Y ).

In each small block expand

ϕ = ϕ′ + ζj

eUj (ϕ
′+ζj ) = eUj+1(ϕ′) + difference.

Sum over configurations with fixed closure X .

Finite range: expectation factors over connected components.

For a connected union X of big blocks,

Kj+1(X ) = Ej

(
sum over ways to fill X

)
.
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Linear part on small sets

X 7→ Kj+1(X ) is a power series in Kj . The linear term in this series
is

X 7→
∑

Y :Y =X ,|Y |j≤2d

EKj (Y )

when coupling constants are zero.

By very general arguments, the theorems above reduce to showing
that this part of Kj+1 is contractive as a function of Kj .

Brydges, D. C. (2009). Lectures on the renormalisation group.
In Statistical Mechanics, volume 16 of IAS/Park City Math. Ser., pages 7–93. Amer. Math. Soc., Providence, RI

Brydges, D. and Yau, H.-T. (1990). Grad φ perturbations of massless Gaussian fields.
Comm. Math. Phys., 129(2):351–392



Example

Consider a scale j + 1 block B.

B

b

The linearisation of Kj 7→ Kj+1(B) is∑
b∈Bj (B)

Kj (b)

For a generic Kj , it would expand by L2 because there are L2 little
blocks b inside B.
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Pierluigi’s list of open problems

In a talk given in 2011 (video on IAS website),

I Analyticity in z inside the dipole phase and Borel summability
on the KT line.

I Extension to other models discussed by Fröhlich–Spencer?
XY, Villain, discrete Gaussian, Zn-clock, and solid-on-solid.

I Equivalence of Coulomb gas and other 2D probabilitic models
at criticality: Ashkin–Teller, six-vertex, Q-state and
antiferromagnetic Potts model, O(n)-models including
self-avoiding walk.

Fröhlich, J. and Spencer, T. (1981). The Kosterlitz-Thouless transition in two-dimensional abelian spin systems
and the Coulomb gas.
Comm. Math. Phys., 81(4):527–602

Nienhuis, B. (1987)). Coulomb gas formulation of two-dimensional phase transitions.
In Domb, C. and Lebowitz, J., editors, Phase Transitions and Critical Phenomena, volume 11, New York. Academic
Press
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