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Abstract

I will discuss the current status of an ongoing program, with T. Balaban,

H. Knoerrer and E. Trubowitz, whose long-term goal is the, mathematically

rigorous, construction of a standard model of a gas of bosons.
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The Physical Setting

Consider a gas of bosons.
◮ Each particle has a kinetic energy. For simplicity, let’s take the correspond-

ing quantum mechanical observable to be −0∆.

◮ The particles interact with each other through a translationally invariant,

exponentially decaying, strictly positive definite two-body potential, v(x,y).

◮ The system is in the thermodynamic equilibrium given by the grand canon-

ical ensemble with temperature T ≥ 0 and chemical potential µ.

◮ I will concentrate on the partition function

Z = Tr e−
1

kT
(H−µN)

with T > 0, where H is the Hamiltonian and N is the number operator.
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The Physics of Interest

Formally,

Tr e−
1

kT
(H−µN) =

∫ ∏

x∈IR3

0<τ≤ 1
kT

dψτ (x)
∗∧dψτ (x)
2πi eA(ψ∗,ψ)

where the action

A =

∫ 1
kT

0

dτ

∫

IR3

d3x ψτ (x)
∗ ∂
∂τ ψτ (x)

−

∫ 1
kT

0

dτ

∫∫
dxdyψτ (x)

∗(−0∆ψτ )(y)





propagator =
1

ik0 − 0k2 + µ

+ µ

∫ 1
kT

0

dτ

∫
dx ψτ (x)

∗ψτ (x)

− 1
2

∫ 1
kT

0

dτ

∫∫
dxdyψτ (x)

∗ψτ (x) v(x,y)ψτ(y)
∗ψτ (y)
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If ψτ (x) = Ψ ∈ C is a constant, independent of τ and x, the action A(ψ∗, ψ)

simplifies to minus the integral over τ and x of the “naive effective potential”

1
2 v̂(0)|Ψ|4 − µ|Ψ|2

µ < 0 µ > 0

|Ψ|−|Ψ|

where v̂(0) =
∫
dy v(x,y).

The minimum of this effective potential is

◮ nondegenerate at the point Ψ = 0 when µ < 0 and
◮ degenerate along the circle |Ψ| =

√
µ
v̂(0) when µ > 0.
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This suggests that for µ < µcrit, 〈ψ(x)〉 = 0, just as you would expect from

conservation of particle number. But for µ > µcrit, 〈ψ(x)〉 = Ψ for some

complex number of modulus |Ψ| ≈
√

µ
v̂(0) 6= 0 and its precise value (i.e.

which argument it has) will depend on the limiting process used to define the

model. So we have to be very careful about how we define the model.
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The Construction Plan – A Rigorous Starting Point

To carefully define the left hand side of

Tr e−
1

kT
(H−µN) =

∫ ∏

x∈IR3

0<τ≤ 1
kT

dψτ (x)
∗∧dψτ (x)
2πi eA(ψ∗,ψ)

you take a limit of obviously well–defined approximations. One way to get

a (pretty) obviously well–defined approximation is to replace space IR3 by a

finite number of points, say X = ZZ3/LspZZ
3. To get a (pretty) obviously

well–defined approximation to the right hand side, replace “time”, [0, 1
kT ], by

a finite number of points too.
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Theorem (Functional Integral) Suppose that R(ε), r(ε) → ∞ as ε→ 0 at

suitable rates. For each fixed finite X,

Tr e−
1

kT
(H−µN) = lim

ε→0

∫ ∏

τ∈εZZ∩(0, 1
kT

]

x∈X

dψτ (x)
∗∧dψτ (x)
2πı eAε(ψ

∗,ψ) χ(ψ∗, ψ)
(1)

with the convention that ψ0 = ψ 1
kT

and

Aε(ψ
∗, ψ) ≈ A(ψ∗, ψ) when ε is small

χ(ψ∗, ψ) cuts off
∣∣ψτ (x)

∣∣ ≤ R(ε)
∣∣∂0ψτ (x)

∣∣ ≤ r(ε)

This step was completed more then half a dozen years ago.
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The Construction Plan – The UV Regime

◮ Temporal UV Limit: Develop a picture of the temporal ultraviolet limit,

ε→ 0 that you can work with. Evaluate enough of the integrals that, even

after taking the limit ε→ 0, we have a more or less standard classical spin

model on ZZ1+3. (Completed.) The nonstandard aspect of the model is

that the spins, and the action, take values in C, rather than IR.

◮ Final result of the Temporal UV Step is a representation of the partition

function as an integral which involves ψτ only for τ ∈ θZZ for some θ

independent of ε and which looks somewhat like a classical spin system.
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X

τ

1
kT

1

ε

θ
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We have shown (by repeated “decimation style” renormalization group steps)

◮ that the partition function can be written as

Tr e−
1

kT
(H−µN) =

∫ ∏

τ∈θZZ∩(0, 1
kT

]

[ ∏
x∈X

dψτ (x)
∗∧dψτ (x)
2πı e−ψτ (x)

∗ψτ (x)
]
Iθ(ψ

∗
τ−θ, ψτ )

◮ and that, if θ was chosen sufficiently small, we can write Iθ as the sum of

a dominant part, Z
|X|
θ eA

′
θ and terms indexed by proper subsets of X and

which are nonperturbatively small, exponentially in the size of the subsets.

◮ For convenience, we rescale time so that the dominant (“small field”) con-

tribution is

1
Z(n)

∫ ∏

τ∈ZZ∩(0, 1
θkT

]

x∈X

dψτ (x)
∗∧dψτ (x)
2πı eA0(ψ

∗,ψ) χ(ψ∗, ψ)

This step was completed about five years ago.
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The Construction Plan – Crude Overview of the Thermodynamic Limit

Our plan is to take the infrared limit (i.e. Lsp → ∞) by
◮ repeatedly executing block spin renormalization group steps to successively

“integrate out” lower and lower energy degrees of freedom.

◮ At the end of each renormalization group step we rescale so that the fields

that have not yet been integrated out are indexed by a unit lattice.

◮ At the end of renormalization group step number n, the partition function

is of the form

Tr e−
1

kT
(H−µN) = 1

Z(n)

∫ [ ∏

x∈X
(n)
0

dψ(x)∗∧dψ(x)
2πi

]
Fn(ψ

∗, ψ)

where
X

(n)
0 =

(
ZZ/ε̃nLtpZZ

)
×
(
ZZ3/εnLspZZ

3
)

ψ : X
(n)
0 → C

Fn(ψ
∗, ψ) = discussed shortly

Z(n) = a normalization constant
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A block spin renormalization group step

x

τ
1 L

1

L or L2
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A block spin renormalization step consists of substituting

1 = 1

N
(n)

T

∫ [ ∏

y∈X̌ (n)

dζ(y)∗∧dζ(y)
2πi

]
e−aL

−2〈ζ∗−Q(n)ψ∗,ζ−Q(n)ψ〉
X̌(n)

where

(Q(n)ψ)(y) = a (possibly smoothed) average of ψ over a block of{
L2 if n < ne

L if n ≥ ne

}
× L× L× L sites centred on y

L = a fixed odd integer

ne =

{
the scale at which the transition from
parabolic to elliptic scaling takes place

N
(n)
T

= a normalization constant

X̌ (n) =

( {
L2 if n < ne

L if n ≥ ne

}
ZZ/ · · ·

)
× (LZZ3/ · · ·

)

ζ : X̌ (n) → C
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to give

Tr e−
1

kT
(H−µN) = 1

Z(n)

∫ [ ∏

y∈X̌ (n)

dζ(y)∗∧dζ(y)
2πi

]
(T(n)Fn)(ζ

∗, ζ)

with

(T(n)Fn)(ζ∗, ζ)

= 1

N
(n)

T

∫ [ ∏

x∈X
(n)
0

dψ(x)∗∧dψ(x)
2πi

]
e−aL

−2〈ζ∗−Q(n)ψ∗,ζ−Q(n)ψ〉
X̌(n) Fn(ψ

∗, ψ)

followed by the rescaling

ζ
(
τ,x

)
= (S−1

n ψ̃)
(
τ,x

)
=

{
L− 3

2 ψ̃(L−2τ, L−1x) if n < ne

L−1ψ̃(L−1τ, L−1x) if n ≥ ne

All together, renaming ψ̃ → ψ,

Tr e−
1

kT
(H−µN) = 1

Z(n+1)

∫ [ ∏

x∈X
(n+1)
0

dψ(x)∗∧dψ(x)
2πi

]
(SnT

(n)Fn)(ψ
∗, ψ)

where (SnF)(ψ∗, ψ) = F
(
S−1
n ψ∗, S

−1
n ψ).
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Crude Outline of the Evaluation of T(n)Fn
◮ Fn is expected to be the sum of a dominant (pure small field) part, F (SF)

n and

terms indexed by proper subsets of X
(n)
0 and which are nonperturbatively

small, exponentially in the size of the subsets. Consider just F (SF)
n .

◮ F (SF)
n = e−An+En where An is the dominant part of the action (details

shortly) and En is an analytic function in the fields that is perturbatively

small.
◮ Think of

[ ∏

x∈X
(n)
0

∫
dψ∗(x)∧dψ(x)

2πı

]
as

[ ∏

x∈X
(n)
0

∫

ψ∗(x)=ψ(x)
∗

dψ∗(x)∧dψ(x)
2πı

]

To evaluate T
(n)F (SF)

n , which is

1

N
(n)

T

[ ∏

x∈X
(n)
0

∫

ψ∗(x)=ψ(x)
∗

dψ∗(x)∧dψ(x)
2πı

]
e−aL

−2〈ζ∗−Q(n)ψ∗,ζ−Q
(n)ψ〉−An+En
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⊲ Find the critical point of the map

(ψ∗, ψ) 7→ aL−2 〈ζ∗−Q(n)ψ∗, ζ −Q(n)ψ〉+An(ψ∗, ψ)

[
The existance, uniqueness and regularity properties that we need have

been completely proven for the pure small field part of both the parabolic

and elliptic flows.
]

⊲ We integrate only over a neighbourhood of the critical point. The re-

maining contributions are large field.

⊲ Substitute

ψ∗ = ψ∗crit(ζ∗, ζ) + δψ∗ ψ = ψcrit(ζ∗, ζ) + δψ
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⊲ Typically, ψ∗crit(ζ∗, ζ) is NOT the complex conjugate of ψcrit(ζ∗, ζ) so

that the domain of integration

δψ∗(x) = δψ(x)∗ + ψcrit(ζ∗, ζ)
∗ − ψ∗crit(ζ∗, ζ)

is not δψ∗(x) = δψ(x)∗. Apply Stokes’ theorem to move the domain of

integration to

δψ∗(x) = δψ(x)∗

[
This step, including bounds on the boundary terms (which are included

in the “large field” part of F (ψ∗, ψ)) has been rigorously executed in the

UV regime. Preliminary bounds, but not the complete argument, have

been done for the parabolic regime.
]

⊲ Do the integral. The result is 1
Z′

n
e−Ǎn+1+Ěn+1,1+Ẽfl where

Ǎn+1 = aL−2 〈ζ∗−Q(n)ψ∗, ζ −Q(n)ψ〉X̌ (n) +An(ψ∗, ψ)
∣∣
ψ(∗)crit

Ěn+1,1 = En
∣∣
ψ(∗)crit

Ẽfl = “new” perturbatively sized contributions

R 18



⊲ Scale. That is, substitute ζ(∗) = S−1
n ψ(∗).

⊲ In future steps, simply substituting the critical field and scaling will cause

a small number of terms in Ẽfl to grow. Move them into An+1. That is

renormalization. The parabolic regime is superrenormalizable:

µn ≈ µ0L
2n vn ≈ v0L

−n

The elliptic regime is strictly renormalizable. Naively,

µn ≈ µ0L
2n vn ≈ vne

[
The detailed bounds that we need on functions like En and the result of the

fluctuation integral

* have been completely proven for pure small field contributions in the

parabolic regime

* have been roughly proven for pure small field contributions in the elliptic

regime

* Renormalization has been completely treated for pure small field contribu-

tions in the parabolic regime.
]
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The Action

The dominant (pure small field) contribution to Fn is of the form

F (SF)

n (ψ∗, ψ) = exp
[
−An(ψ∗, ψ, φn∗(ψ

∗, ψ), φn(ψ
∗, ψ)

)
+ En

(
ψ∗, ψ

)]

where in the parabolic regime

An(ψ∗, ψ, φ∗, φ) =
〈
ψ∗ −Qnφ∗,Qn

(
ψ −Qnφ

)〉
X0

+
〈
φ∗,

(
− ∂0 + 0(−∆)

)
φ
〉
Xn

+ · · ·

+ 1
2vn

〈
(φ∗φ)

2
, 1
〉
Xn

− µn 〈(φ∗φ), 1〉Xn

and in the elliptic regime

An(ψ∗, ψ, φ∗, φ) =
〈
ψ∗−Qnφ∗,Qn

(
ψ−Qnφ

)〉
X0

+
〈
φ∗,

(
− δ−1

n ∂0 + n(−∆)
)
φ
〉
Xn

+ 1
2vn

〈
(φ∗φ)

2
, 1
〉
Xn

− µn 〈φ∗φ , 1〉Xn

where

for n ≤ ne µn ≈ µ0L
2n vn ≈ v0L

−n δ−1
n = 1

for n ≥ ne µn ≈ µ0L
2n vn ≈ vne

δ−1
n ≈ Ln−ne
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and where

X0 = ZZ× ZZ3/ · · ·

Xn = the original lattice shrunk n times by rescaling

=
(
ε̃nZZ)×

(
εnZZ

3
)
/ · · ·

εn = L−n

ε̃n =

{
ε2n = L−2n if n ≤ ne

εnpεn = L−ne−n if n ≥ ne

ne =

{
the scale at which the transition from
parabolic to elliptic scaling takes place

〈α, β〉X0
=

∑

x∈X0

α(x)β(x)

〈α, β〉Xn
= ε̃nε

3
n

∑

u∈Xn

α(u)β(u)

Qn = a block spin average which averages over blocks in Xn

that are centred on points of X0

Qn = an uninteresting operator ≈ 1l
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x

τ
εn 1

ε̃n

1
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The Background Fields

The “background fields” φn∗(ψ∗, ψ), φn(ψ∗, ψ) are
◮ thought of as critical fields at one scale, evaluated at critical fields of the

next scale, evaluated at critical fields of the next scale, · · ·

◮ obtained by solving

∂
∂φ∗

An(ψ∗, ψ, φ∗, φ) =
∂
∂φAn(ψ∗, ψ, φ∗, φ) = 0

This is a system of nonlinear “partial differential equations”.

◮ In most of the parabolic regime the nonlinearity can be treated as a per-

turbation.

◮ In the last part of the parabolic regime and in the elliptic regime the non-

linearity cannot be treated as a perturbation. Instead we

⊲ switch to radial and tangential fields

ψ∗ = rn exp
{

1
rn
(R− iΘ)

}
ψ = rn exp

{
1
rn
(R + iΘ)

}

where rn =
√

µn

vn
is the radius of the potential well.
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⊲ Make an initial guess Φ∗, Φ for φ∗, φ. They are determined from ψ∗, ψ

by a carefully chosen system of linear “partial differential equations”.
⊲ Perturb off of Φ∗, Φ, again using radial and tangential fields.

φ∗ = Φ∗ exp
{

1
rn
(δnχ− iη)

}
φ = Φexp

{
1
rn
(δnχ+ iη)

}

[
The existance, uniqueness and regularity properties that we need have been

completely proven for the pure small field part of both the parabolic and elliptic

flows.
]
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The Elliptic Background Field Equations

Write

ψ∗ = rn exp
{

1
rn
(R− iΘ)

}
ψ = rn exp

{
1
rn
(R + iΘ)

}

Φ∗ = rn exp
{

1
rn
(δnX− iH)

}
Φ = rn exp

{
1
rn
(δnX+ iH)

}

φ∗ = Φ∗ exp
{

1
rn
(δnχ− iη)

}
φ = Φexp

{
1
rn
(δnχ+ iη)

}

Then the background field equations, in the elliptic regime, are

�n

[
χ
η

]
+

[
δnV1

V2

]
=

[
δn IF1

IF2

]
+Q⋆nQn

[
δnR
Θ

]
−�n

[
X
H

]

which reduces to

�n

[
χ
η

]
+

[
δnV1

V2

]
=

[
δn IF1

IF2

]

when we choose Φ(∗) by

�n

[
X
H

]
= Q⋆nQn

[
δR
Θ

]
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Here V = [V1 V2 ]
t and IF = [ IF1 IF2 ]

t are explicitly constructed (but

complicated) entire functions and

�n =

[
2δ2nµn + ε̃nδn

2 ∂⋆0∂0 + nδ
2
n(−∆) − i

2

(
∂0 − ∂⋆0

)
i
2

(
∂0 − ∂⋆0

)
ε̃n
2δn

∂⋆0∂0 + (−∆)

]

+Q⋆nQnQn

[
δ2n 0
0 1

]

and
Θ : ZZ× ZZ3 → C

H : ε̃nZZ×
(
εnZZ

)3
→ C

R :
(
ZZ/ε̃nLtpZZ

)
×
(
ZZ3/εnLspZZ

3
)
→ C

X , χ , η : ε̃nZZ/ε̃nLtpZZ×
(
εnZZ/εnLspZZ

)3
→ C

eiΘ/rn , ∂νΘ :
(
ZZ/ε̃nLtpZZ

)
×
(
ZZ3/εnLspZZ

3
)
→ C

eiH/rn , ∂νH , HΘ : ε̃nZZ/ε̃nLtpZZ×
(
εnZZ/εnLspZZ

)3
→ C

where

HΘ(u) = H(u)−Θ
(
x(u)

)
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