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• Topological insulators

Materials with topological order that are

insulators in their interior but have edges

carrying protected conducting states

• Simplest setup

1st quantized models on infinite crystalline

lattice C ⊂ Ed

C
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1• Bloch theory

• Diagonalization of discret translations

by Fourier transform gives the space

of states
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where T
d is the Brillouin torus of quasi-momenta k mod 2π

a
Z
d



• The evolution is governed by lattice Hamiltonian H that

in the Bloch picture is block-diagonal

(Hψ)(k) = H(k)ψ(k)

for ψ ∈ L2(Td,CN ) where H(k) are N ×N hermitian matrices

smoothly dependent on k ∈ T
d

• Insulators have a gap in the spectrum of H(k) around the Fermi

energy ǫF separating eigenvalues en(k) < ǫF from en(k) > ǫF
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• Chern topological insulators

• Spectral projectors P (k) on en(k) < ǫF smoothly depend on k ∈ T
d

• Subspaces E(k) = P (k)CN ⊂ C
N form a vector bundle E

• The simplest topological invariant for 2d insulators (like doped

graphene) is the 1st Chern number of E

c1(E) =
i

2π

∫

T2
trP (k)

(
dP (k)

)∧2 ∈ Z

• i
2π trP (dP )2 ∝ to the Berry curvature is the simplest example

of a characteristic class



• Bulk-edge correspondence: c1(E) counts with chirality

the massless states at the boundary components of a bounded

crystal with energies in the bulk gap
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• Floquet generalization of Chern insulators

• Perturbation periodic in time (e.g. due to a microwave) lead to

time-dependent Hamiltonians H(t) = H(t+ T )

• The evolution operators i∂tU(t) = H(t)U(t), U(0) = I, satisfy

U(t+ T ) = U(t)U(T )

• Floquet theory: spectral analysis of U(T, k) with eigenvalues

e−ien(k)T replaces that of static Bloch Hamiltonians H(k)

• Quasi-energies en(k) are defined modulo 2π
T ⇒ quasi-energy

bands repeat themselves periodically



• gapped Floquet system: U(T, k) have a spectral gap

around quasi-energy ǫ for all k

• Gap-dependent static effective Hamiltonians

Hǫ(k) =
i

T
ln

−ǫT
U(T, k)

տ cut at argument −ǫT

satisfy U(T, k) = e−iTHǫ(k) and are used to periodize the evolution:

Vǫ(t, k) = U(t, k) e
it Hǫ(k)

= Vǫ(t+ T, k)

• Let χ = 1
12π tr(g−1dg)∧3 be a closed 3-form on U(N)

Rudner-Lindner-Berg-Levin (2013) considered the “degree”

Wǫ =
1

2π

∫

T3

V
∗
ǫ χ ∈ Z

of Vǫ as a dynamical invariant of 2d Floquet systems



• For 0 < ǫ < ǫ′ < 2π
T

Hǫ′ (k) − Hǫ(k) =
2π

T
Pǫ,ǫ′ (k)

Pǫ,ǫ′ (k) - spectral proj. of U(T, k) on quasi-energies ǫ < en(k) < ǫ′

• Implies that Wǫ′ −Wǫ = c1(Eǫ,ǫ′ )

• Wǫ counts with chirality the edge states of U(T ) in the bulk

quasi-energy gap around ǫ
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• Time-reversal invariant topological insulators

• Time reversal sends ψ(k) to θψ(−k) where θ is an anti-unitary

operator in CN s. t. θ2 = −I (N must be even)

• For time-reversal invariant (TRI) systems

θ H(k) θ−1 = H(−k)

• Eigenvectors of H(k) and of H(−k) come then in Kramers’ pairs

ψn(k) and θψn(k) with the same energy
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• TRI implies that θP (k)θ−1 = P (−k) ⇒ c1(E) = 0

⇒ E is trivializable so that ∃ a global frame

(ψi(k)), i = 1, . . . , 2m

• Kane-Mele (2005) defined an invariant KM(E) ∈ Z2 obstructing

the choice of a global frame of E composed of Kramers’ pairs

• Let wij(k) = 〈ψi(−k)|θψj(k)〉 = −wji(−k) (“sewing matrix”)

Obstruction KM(E) was given by the expression (Fu-Kane 2006)
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∏
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• KM(E) counts modulo 2 the number of Kramers’ pairs of

massless edge states of opposite chirality (Graf-Porta 2013)



• Questions

• Are there characteristic-class-type integral formulae for KM(E) ?

• How to generalise KM(E) to TRI Floquet systems ?



• Interlude I. Wess-Zumino amplitudes and their square root

• ∀ φ : T2 → U(N). ∃ its extension φ̃ : B → U(N) to an oriented

3-manifold B with ∂B = T
2 such that

exp
[
i

∫

B

φ̃
∗
χ
]

≡ e
iSWZ(φ)

is independent of the choice of the extension and defines the 2d

Wess-Zumino amplitude of φ (Witten 1983)
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• Suppose that φ is TRI

φ(−k) = θ φ(k) θ
−1

∃ B with ∂B = T
2 with an orientation preserving involution ϑ

reducing to k 7→ −k on ∂B and an extension φ̃ : B → U(N) of φ

s. t.

φ̃(ϑ(x)) = θ φ̃(x) θ−1

and

exp
[

i

2

∫

B

φ̃
∗
χ
]

≡
√

eiSWZ(φ)

is independent of the choice of φ̃ and defines the square root

of the Wess-Zumino amplitude of φ

Proof. By direct construction and checking



• Interlude II. 3d index

• Let Ψ : T3 → U(N) be such that

Ψ(−k) = θΨ(k) θ
−1

Let N ⊂ T
3 be a half of T

3 forming

a fundamental domain of k 7→ −k

0
Ψ

T

NN

N

U(2M) Adook    −k

3

Proposition.

K(Ψ) ≡
exp

[
i
2

∫
N

Ψ∗χ
]

√
eiSWZ(Ψ|∂N )

∈
{
± 1

}

does not depend on choice of N

Proof. By gerbe techniques using local expressions for
√
eiSWZ



• Integral formulae for KM(E)

• One has the relation (apparently unknown)

(−1)
KM(E)

= e
iSWZ(w)

տ
sewing matrix

• Let for a family of the valence band projectors P (k)

ΨP (t, k) = e
itP (k)

= ΨP (t+ 2π, k)

φP (k) = ΨP (π, k) = I − 2P (k)

If P (−k) = θ P (k) θ−1 then

(−1)KM(E) =
√

eiSWZ(φP ) = K(ΨP )



• Floquet generalization of KM(E)

joint work with D. Carpentier, P. Delplace, M. Fruchart and C. Tauber,
PRL 114 (2015), 106806 and Nucl. Phys. B 896 (2015), 779-834

• For TRI periodic systems with H(t) = H(t+ T ) s. t.

H(−t) = θH(t)θ−1 the periodized evolution satisfies

Vǫ(−t,−k) = θ Vǫ(t, k) θ
−1

⇒ in 2d the RLBL index Wǫ = 0

• We defined in this case the dynamical topological index Kǫ ∈ Z2 by

(−1)
Kǫ = K(Vǫ)

• The RLBL relation Wǫ′ −Wǫ = c1(Eǫ,ǫ′ ) is replaced now by

Kǫ′ −Kǫ = KM(Eǫ,ǫ′ )



• Kǫ should count modulo 2 the Kramers’s pairs of edge states

of U(T ) inside the bulk quasi-energy gap labeled by ǫ
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• Extension to 3d

• Strong Fu-Kane-Mele invariant (2007) KMs(E) is given by the same

formula as in 2d but with 8 TRIM

• Relation to Chern-Simons amplitudes (magnetoelectric polarizability)

(−1)KMs(E) = exp
[
i

∫

T3
SCS(A

B)
]

տ
Berry connection

• New integral expression using our 3d index:

(−1)
KMs(E)

= K(φP )

• Strong invariant for 3d Floquet systems:

(−1)
Ks

ǫ = K(Vǫ|t=T
2
), K

s
ǫ′ −K

s
ǫ = KM

s
(Eǫ,ǫ′ )

• Main remaining open problem: extending the relations to WZ

amplitudes to the bulk-edge correspondence



Many happy returns, Vincent


