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the field of quantum gravity was developing, with lots of activities and results, but quietly and peacefully....

.... SO, it attracted Vincent’s attention and interest....
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then, switch to “discrete counterparts: holonomies and fluxes:
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Loop quantum gravity and spin foam models

- 1
started as canonical quantization of continuum GR in connection/triad variables (AZ : Ef = —y/e eg)
Y
..... impose diffeo invariance........... end up with purely algebraic and combinatorial structures:

* Hilbert space decomposes into graph-based sectors: H — @ 7—({;’”&’0 7—(%”’0 — L2 (SU(Q)E/SU(Q)V)
r

. spin network representation (graphs labelled by algebraic data): Rovelli-Smolin, ‘95

linv(gla---ygE) = Z fiZl’”’JE;% SF;je,iv(ge) SF;je,ifu(ge) — Hiv(jeDv) HDje(ge)

jl?"')jE ’1)67 ecl’

intertwiner between

representations on Wigner representation
edges incident to function

vertex
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dynamics of pre-geometric quantum structures

« canonical definition of quantum dynamics: Hamiltonian constraint equation: H \If — O

« covariant definition of quantum dynamics: sum-over-histories (“spin foam models”)
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q
evolution of spin networks involves changes in

combinatorics and in algebraic data , ,

history is 2-complex (vertices, edges, faces) labelled ‘ k
by same algebraic data = spin foam

Transition amplitudes = sum over histories (spin foam model = combinatorial-algebraic sum over geometries):

(W (4, 9) [ Uy (57,)) = Z w(I) Z Ar (J, 1) ~ 7 /pg et 5(9) »

Ly, 1S 35,57 53,9
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in fact,
 spin foam 2-complex dual to simplicial complex in d dimensions

« spin foam amplitudes (for given 2-complex) are simplicial gravity path integral
(~ quantum Regge calculus) in different variables (group representations)

- sum over spin foam 2-complexes ~ sum over triangulations
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in fact,

 spin foam 2-complex dual to simplicial complex in d dimensions

« spin foam amplitudes (for given 2-complex) are simplicial gravity path integral
(~ quantum Regge calculus) in different variables (group representations)

- sum over spin foam 2-complexes ~ sum over triangulations

T~

other possible definition of discrete gravity path integral
(dynamical triangulations approach to quantum gravity)



Loop quantum gravity and spin foam models

(U (4, 0) | Woy (57,17)) = Z w(I') Z Ar (J,1) ~ /Dgeis(g) ”
Ly, {JY,{I}|4,5' 4,4

in fact,
 spin foam 2-complex dual to simplicial complex in d dimensions

« spin foam amplitudes (for given 2-complex) are simplicial gravity path integral
(~ quantum Regge calculus) in different variables (group representations)

- sum over spin foam 2-complexes ~ sum over triangulations

T~

- quantum geometric understanding of states and amplitudes

other possible definition of discrete gravity path integral

many results in recent years: (dynamical triangulations approach to quantum gravity)

- several interesting models
- stronger link canonical <— —> covariant formalisms

- deeper link with simplicial gravity
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Loop quantum gravity and spin foam models

open issues:

« quantization/construction ambiguities

- prescription of weights for sum over foams/triangulations _ _
s> 1cnormalisation!!!!

- divergences

« continuum limit

but..... how to define renormalisation for background independent quantum gravity,

l.e. for pre-geometric degrees of freedom, in absence of space and time?



Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

Quantum field theories over group manifold G (or corresponding Lie algebra) © : GX d  C

QFT of spacetime, not defined on spacetime
: “ ”. b S X d X d
relevant classical phase space for “GFT quanta”: (T G) ~ (g X G)

can reduce to subspaces in specific models depending on conditions on the field

d is dimension of “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)
example:d=4 (g1, 92,93,94) < p(B1, B2, B3, By) — C

can be defined for any (Lie) group and dimension d, any signature, .....

very general framework; interest rests on specific models/use
(most interesting QG models are for Lorentz group in 4d)
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Group field theories

Fock vacuum: “no-space” (“emptiest”) state |0 >

single field ° quantum spin network vertex or tetrahedron
(“building block of space”) ©(91, 92, 93, 94) < p(B1, B2, B3, By) — C

¥ 479

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones) - same type of states as in LQG

AN




Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A
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classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(p,7) = - / APk (9:)0(g:) + — / A9 o(gi1)0(G0)V (Gias i)+ coc

2 D!
“combinatorial non-locality” /
in pairing of field arguments

simplest example (case d=3,4): simplicial setting

e.. d=3 : <‘ E:> .

V//
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Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(0.9) = 5 [ WgleladK(aele) + 7 [dgilelgn)-p@p)V (giasgin)  + e

“combinatorial non-locality” /
in pairing of field arguments

simplest example (case d=3,4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)



Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A

S(p,P) = 5/[d9i]¢(gi)’c(gi)%0(gi) + ﬁ/[dgm]@(gzl)----Sﬁ(giD)V(gz’a,giD) + c.c

“combinatorial non-locality” /
in pairing of field arguments

simplest example (case d=3,4): simplicial setting

12 3 4

12 3 4
L 2 € ¢
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Feynman perturbative expansion around trivial vacuum
ANT
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= stranded diagrams dual to cellular complexes of arbitrary topology
(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)

(richer combinatorics of Feynman diagrams wrt ordinary local QFT)
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Group field theories

Feynman perturbative expansion around trivial vacuum
ANT

EF: sym(I’) Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

z /DSOD¢ RESNCHD)

= stranded diagrams dual to cellular complexes of arbitrary topology
(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)

(richer combinatorics of Feynman diagrams wrt ordinary local QFT)

e U
Feynman amplitudes (model-dependent): m T k

equivalently:
spin foam models (sum-over-histories of P j ) j

spin networks) k
Reisenberger,Rovelli, ’00

lattice path integrals

(with group+Lie algebra variables) /”_J\ ;

A. Baratin, DO, ‘11 W
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example: d=3 (or restricting to finite group)

Ty : 753 — C
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Group field theories and tensor models

same combinatorics (of states/observables and histories/Feynman diagrams), additional group-theoretic data

. dropping group/algebra data
example: d=3 (or restricting to finite group)
Tz’jk : ZX,B — C

TijkIXXS%C

o(g1,92,93) : G*° = C
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Group field theories and tensor models

same combinatorics (of states/observables and histories/Feynman diagrams), additional group-theoretic data

. dropping group/algebra data
example: d=3 (or restricting to finite group)
Tz’jk : ZX,B — C

TijleXB%C

o(g1,92,93) : G*° = C

A
41/ N3

i'I' n'

Z TijkalmejnTnli

17klmn

1
S(T) = ) Z LTijrdkji —

.4,k

AVT AVT

analogous to

Z — DT —S(T,A) — Z — NFF—%VF ]
/ e ; Sym(r) T ; Sym(r) Dynamical

Triangulations
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good points:

LQG spin networks as many-body systems and 2nd quantisation —-> GFT Fock space

1

4 F(Ho) = Dy sym { (’Hfgl) oH @ ® Hfgm)

491‘6 %gaz H'U — L2 (GXd/G)

2
93 !
93 93
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good points:

LQG spin networks as many-body systems and 2nd quantisation —-> GFT Fock space

: F(Hy) = Pr—y sym { (,H1()1) ® 7-&82) - ® H(V))

4§ %2 H'U — L2 (GXd/G)

spin foam model with sum over complexes Z(I') = Z HAf (J, 1) HA (J, 1) HA J, 1)
as GFT perturbative expansion (true for any SF model) {1} 55" 04 f
Ar(J)
Z0) > { A,(]) i { SI~MID - S(0.0)
Ay (J, 1) V(J,I) ~V(g)
)

A
ﬁ/dgm (gi1)----¢(9ip)V(Gia,gip) + c.c.

| <—>v
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Group field theories

good points:

LQG spin networks as many-body systems and 2nd quantisation —-> GFT Fock space

F(Hy) = Pr—y sym { (’Hq()l) QHY @ - ® H(V))

4§ %2 H'U — L2 (GXd/G)

spin foam model with sum over complexes Z(T) = Z HAf (J, 1) HA (J, 1) HA (J, 1)
as GFT perturbative expansion (true for any SF model) {Jy AL 5588 f

Af(J) ~ K

Z(T) & Ag(J,]) ~i— L) (9) < S(p,p)

A (J, 1) (J, I) ~V(g)
precise prescription for S(0%) = 3 [ ool (oe(a) + 77 [ [galolon)o@oVgingin) + ce
combinatorial weights in 2.
sum over spin foams t
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Group field theories

open Issues:

- quantization/construction ambiguities

isation!!!!
. divergences q renormalisation!!!!

« continuum limit

but now .... problem formulated within (almost) QFT!

availability of powerful QFT ideas and tools....

SO.... some people started advocating greater role for GFTs and called for taking advantage of QFT methods
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Vincent arrived on the scene.....

brought in many collaborators
quickly built up on results of others
found many interesting mathematical problems (and solutions)

opened up several new directions
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+ A /[dgz]6 @(gl v 84 4 g6)@(g67 82, g5)@(g57 84, 83)W(837 82, gl)
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discrete 1st order path integral for 3d gravity/BF theory
on simplicial complex dual to GFT Feynman diagram



Vincent’'s contributions to GFT renormalisation

initial work on topological group field theories

example: d=3 ©p 50(3)3/50(3) R +  simplicial interaction
Vh € SO(3), wo(hgi, hgr, hgs) = ©e(g1,82,83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)

N
Ar = / dh 0 (He(h)) = / dhy 0 ( h,) = lattice gauge theory formulation of
H 1;[ H H Hleaf D 3d gravity/BF theory

= ZHdJeH{ji A /Hdhl [Tid'x e Z.\
4 Js

{]e
/ discrete 1st order path integral for 3d gravity/BF theory

spin foam formulation of 3d gravity/BF theory on simplicial complex dual to GFT Feynman diagram
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initial work on topological group field theories and models of 4d gravity

intricate divergence structure depending on combinatorics of simplicial complex

- scaling and perturbative bounds

J. Magnen, K. Noui, V. Rivasseau, M. Smerlak, ’09; J. Ben Geloun, J. Magnen, V. Rivasseau, ‘10

« quantum corrections of EPRL model

J. Ben Geloun, R. Gurau, V. Rivasseau, ‘10; T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P. Vitale, ’10

....only warming up....no full use of QFT tools...missing ingredients in the formalism
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colouring!

key to encoding and controlling topology of GFT Feynman diagrams: results from Crystallization Theory
(Pezzana, Ferri, Gagliardi,...)

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

refined definition of tensor models via “colors” (......Gurau.....)

3 Face gluing
e.g. 4 complex un-symmetric tensors: ’LC;]C ; ZX, — C a=0,1,2,3 ‘ -
1 2 A 0 1 2 3 ,

S(T) = 9 Z Z T{;‘k zC;k - AV N3 Z TijkalmejnTnli + cc I: :I
a 1,9,k ) 17klmn

] ]

led to: Propagator

« 1/N expansion - dominance of melonic diagrams (special triangulations of spheres)
- universality of tensors

* notion of “tensorial invariance” ~ “tensorial locality”
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Tensorial GFTs (key insights from tensor models)

locality principle and soft breaking of locality:

tensor invariant interactions S(p,p) = Z tols(p, P)

beB \ /
indexed by bipartite d-colored graphs (“bubbles”) ﬁ
dual to d-cells with triangulated boundary

kinetic term = e.g. Laplacian on G

—1
d _
2 A /[dgi]lzgp(gl,gé,g?” )Sp(glag27g37 )Sp(g87g77g67 )
m' =) A
r r _ .
p Opagato 90(g87g97g10, )@(g12,g9,g10, )90(g127g77g67 )

“coloring” allows control over
topology of Feynman diagrams

require generalization of notions of “connectedness”, “contraction of high subgraphs”, “locality”, Wick ordering,

taking into account internal structure of Feynman graphs, fuII combinatorics of dual cellular complex, results from
crystallization theory (dipole moves)



TGFT renormalization

example of Feynman diagram

* building blocks: coloured bubbles, dual to d-cells with triangulated boundary

* glued along their boundary (d-1)-simplices
- parallel transports (discrete connection) associated to dashed (color O, propagator) lines

- faces of color i = connected set of (alternating) lines of color 0 and |

| | |

“contraction of internal line” ~ dipole contraction § : i_ _é




Vincent’'s contributions to GFT renormalisation




Vincent’'s contributions to GFT renormalisation

- first renormalizable TGFT model (rank-4, abelian U(1), no gauge invariance) + beta function

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11



Vincent’'s contributions to GFT renormalisation

- first renormalizable TGFT model (rank-4, abelian U(1), no gauge invariance) + beta function

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11

launch of the “Tensor Track”! V. Rivasseau, ‘11
focus on tensorial field theories, independently (or before) full blown TGFTs with quantum geometric data
bring renormalisation to quantum gravity!
base theory on universality of tensors

idea of geometrogenesis: continuum geometry from phase transition of pre-geometric theory



Vincent’'s contributions to GFT renormalisation

- first renormalizable TGFT model (rank-4, abelian U(1), no gauge invariance) + beta function

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11

launch of the “Tensor Track”! V. Rivasseau, ‘11

focus on tensorial field theories, independently (or before) full blown TGFTs with quantum geometric data

bring renormalisation to quantum gravity!

base theory on universality of tensors

idea of geometrogenesis: continuum geometry from phase transition of pre-geometric theory

- first renormalizable TGFT model with gauge invariance (rank-4, abelian U(1) )

S. Carrozza, DO, V. Rivasseau, ‘12



Vincent’'s contributions to GFT renormalisation

- first renormalizable TGFT model (rank-4, abelian U(1), no gauge invariance) + beta function

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11

launch of the “Tensor Track”! V. Rivasseau, ‘11

focus on tensorial field theories, independently (or before) full blown TGFTs with quantum geometric data

bring renormalisation to quantum gravity!

base theory on universality of tensors

idea of geometrogenesis: continuum geometry from phase transition of pre-geometric theory

- first renormalizable TGFT model with gauge invariance (rank-4, abelian U(1) )

S. Carrozza, DO, V. Rivasseau, ‘12

- first renormalizable non-abelian TGFT model with gauge invariance (rank-3, SU(2), 3d gravity)

S. Carrozza, DO, V. Rivasseau, ‘13
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(,a -1 tensor invariant interactions, e.g. -
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Carrozza, DO, Rivasseau, ‘13

kinetic term = Laplacian on SU(2)"3 3

(,a -1 tensor invariant interactions, e.g. -'
2 Z
(m - ﬁ,‘ ) 1 1

o
gauge invariance: Vhe G, o(gi,...,84) = o(gih,...,g4h)
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explicit power counting depends on details combinatorics of (colored) graph ~ dual cellular complex,
e.g.rank of incidence matrix of faces

can obtain general characterisation of just-renormalizable models of this type:
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4 2 4
5 1 6 | G=U(Q)
6 1 4 || G=U(1)

similar analysis for TGFTs on homogeneous space SU(2)/U(1)  Lahoche, DO, ‘15

necessary condition: divergent subgraphs must be “quasi-local’, i.e. tensor invariants

NN 1 AN 1 i,
AN / \ /
\\l. 1 i//
3 3 AN /
5 3 3 5
\ /
\\.// ]
J




TGFT example: SU(2), d=3, with gauge invariance

Carrozza, DO, Rivasseau, ‘13

explicit power counting depends on details combinatorics of (colored) graph ~ dual cellular complex,
e.g.rank of incidence matrix of faces

can obtain general characterisation of just-renormalizable models of this type:

d =rank | D =dim(G) | order explicit examples
B 3 3 6 G =SU(2)
3 4 4 G = SU(2) x U(1)
4 2 4
5 1 6 | G=U(Q)
6 1 4 || G=U(1)

similar analysis for TGFTs on homogeneous space SU(2)/U(1)  Lahoche, DO, ‘15

necessary condition: divergent subgraphs must be “quasi-local’, i.e. tensor invariants

% ey

o flatness condition: the parallel transports must peak around 1 (up to gauge)

it requires a special property: “traciality”
. P property- y @ combinatorial condition: connected boundary graph.



TGFT example: SU(2), d=3, with gauge invariance

Carrozza, DO, Rivasseau, ‘13

explicit power counting depends on details combinatorics of (colored) graph ~ dual cellular complex,
e.g.rank of incidence matrix of faces

can obtain general characterisation of just-renormalizable models of this type:

d =rank | D =dim(G) | order explicit examples
B 3 3 6 G =SU(2)
3 4 4 G = SU(2) x U(1)
4 2 4
5 1 6 | G=U(Q)
6 1 4 || G=U0(1)

similar analysis for TGFTs on homogeneous space SU(2)/U(1)  Lahoche, DO, ‘15

necessary condition: divergent subgraphs must be “quasi-local’, i.e. tensor invariants

% ey

o flatness condition: the parallel transports must peak around 1 (up to gauge)

it requires a special property: “traciality”
G P property- y @ combinatorial condition: connected boundary graph.

true for models dominated by “melonic diagrams”
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- systematic renormalisability group analysis of Tensorial Group Field Theory (TGFT) models:

many results: perturbative renormalizability and renormalisation group flow

J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, V. Lahoche, .....

- several renormalizable abelian TGFT models (different groups and dimension, with/without gauge invariance)

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11 S. Carrozza, DO, V. Rivasseau, ‘12

first renormalizable non-abelian TGFT model in 3d with gauge invariance (3d BF + laplacian)
S. Carrozza, DO, V. Rivasseau, ‘13

o first renormalizable TGFT model on homogeneous space (SU(2)/U(1))*d v, Lahoche, DO, 15

proof of asymptotic freedom for abelian TGFT models without gauge invariance

J. Ben Geloun, D. Ousmane-Samary, '11; J. Ben Geloun, ‘12

study of asymptotic freedom/safety for non-abelian TGFT models with gauge invariance
S. Carrozza, ‘14

4th order interactions: generic asymptotic freedom (strong wave function renorm.); higher orders: more subtle
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much more along the Tensor Track! V. Rivasseau, ‘14

- combinatorics fundamental —> tensor models fundamental —> GFTs intermediate description
« TGFT axiomatics

* OS positivity?

- constructive methods and non-perturbative renormalisation

« more mathematical directions....

- constructive methods (e.g. loop-vertex expansion, intermediate field representation, analysis of SD equations)
* in tensor models (Gurau, 11, ’13; Delepouve, Gurau, Rivasseau, ’14)

* in TGFTs (Delepouve, Rivasseau '14; Lahoche, DO, Rivasseau, '15; Lahoche, ‘15)

»  solving TGFTs?

 Functional RG approach to GFTs -
Krajewski, Toriumi, 14; Benedetti, Ben Geloun, DO, '14; Ben Geloun, Martini, DO, '15; Benedetti, Lahoche, '15; .....
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a very wet landscape....




..... but one that has become very fertile and rich!
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many renormalizable models

- mathematical solidity

* many new tools

- powerful interplay between GFTs, simpler tensor models and combinatorics

« very much beyond original context (LQG, spin foams, standard GFTs); natural and welcome!
new connections, new ideas, new tools, new directions

- many new results and a super-strong drive!

the whole GFT field is thriving like never before (not only renormalisation or statistical aspects, of course)!



the multi-scale tsunami “Vincent” is constituted of some strange, beneficial, energetic fluid!
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much beyond mathematical physics!

an incredible and never ending flow of ideas, projects,
iNitiatives

friendly and very human tsunami:
constant support and encouragement




Happy birthaay, Vincent!

and, Thanks!



