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Vincent has always been a master of combinatorics . . .

The multiple forest formula states:

Theorem IV.1 (The Algebraic Brydges-Kennedy Jungle Formula)

o Tot)= T (I [)(l( T )
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where Fo = 0 by convention, h is the vector (h;) 1€3m and the functions h’{ijk} (h)
are defined in the following manner:

- If © and § are not connected by Fy let hﬁ’g’; (h) =0.

- If i and 7 are connected by Fr but not by Fr—1 let

W75 () = inf{ hu, 1 € L (i3} 0 (§6\Ge-1)}

(recall that Lg{ij} is the unique path in the forest § connecting i to j).
- Ifi and 3 are connected by Fr—1 let h{fz’f}(h) =1.

Proof: By induction. The case m = 1 was treated in Section II. For the
induction step from m to m + 1, we sum over the last forest §m41:
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(Iv.2)
where h = (hl)lesm+u h' = (hl)lesm and we have noted that if 1 < k < m

then hlf’k(h) = hlf”k(h’ ). To perform the summation over &, +1, we will use the
forest formula of section I and our favorite argument of forgetting the details
of the tree structure up to §,, to concentrate on what §,,+1 brings as new
connections between the existing clusters. We introduce the partition D of I,
created by §m = {l1,...,0,} and the uforest on D, Frny1 = {l1,-.., L=}
induced by Fm+1\Fm = {lu+1,- .., } with v < 7. The definitions are the same
as in the proof of Lemma II.2 except that we have u-forests instead of o-forests.

For a link {ab} between two elements a and b of D, let U(ap) = 3, jep u’{’:j}l

Summing over §,+1, u-forest on I, containing §,,, with the “propagators” u?;;?}l
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The deformed exponential function F'(z, y) Z x_

e Defined for complex x and y satisfying |y| < 1
e Analytic in C x D, continuous in C x D
e F(-,y) is entire for each y € D

e Valiron (1938): “from a certain viewpoint the simplest entire
function after the exponential function”

Applications:
e Statistical mechanics: Partition function of one-site lattice gas

e Combinatorics: Enumeration of connected graphs,
generating function for Tutte polynomials on K,
(also acyclic digraphs, inversions of trees; .. .)

e Functional-differential equation: F'(x) = F(yx) where ' = 0/0x

e Complex analysis: Whittaker and Goncharov constants



Application to enumeration of connected graphs
e Let ay,, = # graphs with n labelled vertices and m edges

e Generating polynomial A, (v) =) aym, v™"

oo
e Exponential generating function A(x,v) = > % A, (v)

n=0
e Of course ay, ,, = ("(";11)/2) —  A,(v)=1+0)" 2 —
= z"
Z o A,(v) = F(z,1+v)
n=0
e Now let ¢,,, = # connected graphs with n labelled vertices

and m edges

e Generating polynomial C,(v) = Z Crm U

o "
e Exponential generating function C(x,v) = ) —
n=1 T

Ch(v)
e No simple explicit formula for C,(v) is known, but ...

e The exponential formula tells us that C(x,v) = log A(x, v), i.e.

5 Culv) = log Pz, 1+0)
n.

n=1

[see Tutte (1967) and Scott—A.D.S., arXiv:0803.1477 for generalizations
to the Tutte polynomials of the complete graphs K]

e Usually considered as formal power series

e But series are convergent if |14+ v| <1
[see also Flajolet—Salvy—Schaeffer (2004 )]



x"
Elementary analytic properties of F'(x, y) Z —

ey=0 F(z,0)=1+x

e0 < |yl < 1. F(-,y) is a nonpolynomial entire function

of order O: .
T

P zk(y)
where ) |zr(y)| 7 < oo for every a > 0

ey=1 F(x,1)=

o ly| =1 with y # 1. F(-,y) is an entire function of order 1

and type 1:
z ) Jofonly)
zk(y)

- 1

where Y |z (y)| 7 < oo for every o > 1

[see also Alander (1914) for 4 a root of unity; Valiron (1938) and
Eremenko-Ostrovskii (2007) for y not a root of unity]

e |y| > 1: The series F(-,y) has radius of convergence 0



Consequences for C,(v)

e Make change of variables y = 1 4 v:
Culy) = Culy—1)

e Then for |y| < 1 we have

0

" — x
and hence

Culy) = —(n—1)! Zxk(y)_" for all n > 1
k
(also holds for n > 2 when |y| = 1)

e This is a convergent expansion for O, (y)

e [n particular, gives large-n asymptotic behavior

Culy) = —(n—Dlazy(y)™ [1 + O(e™™)]

whenever F( -, y) has a unique root z((y) of minimum modulus

Question: What can we say about the roots zy(y)?



Small-y expansion of roots x(y)

e For small |y|, we have F(x,y) = 1+ 2 + O(y), so we expect a
convergent expansion

9]

ro(y) = —1 — Zanyn

n=1

(easy proof using Rouché: valid for |y| < 0.441755)
e More generally, for each integer £k > 0, write z = £y~ and
study

5_7: y(n—k)(n—k‘—l)/Q
n.

]2

Fi(&y) = ¢ FUREEy™ y) =

n

IIQ’

Sum is dominated by terms n = k and n = k + 1; gives root

1+ f: aff)y”]
n=1

Rouché argument valid for |y| < 0.207875 uniformly in k:
all roots are simple and given by convergent expansion x(y)

we(y) = —(k+1)y"

e Can also use theta function in Rouché (Eremenko)



Might these series converge for all |y| < 17

Two ways that xx(y) could fail to be analytic for |y| < 1:

1. Collision of roots (— branch point)
2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in
the open unit disc D (except of course at y = 0).

In fact, for any compact subset K C ID and any € > 0, there exists
an integer kg such that for all y € K ~ {0} we have:

(a) The function F'( -, y) has exactly kg zeros (counting multiplicity)
in the disc |z| < koly]_(ko_%), and

(b) In the region |x| > ko\y\_(k’o_%), the function F(-,y) has a
simple zero within a factor 1+ ¢ of —(k+1)y~* for each k > ky,
and no other zeros.

e Proof is based on comparison with a theta function (whose roots
are known by virtue of Jacobi’s product formula)

e Conjecture that roots cannot escape to infinity even in the closed
unit disc except at y =1

Big Conjecture #1. All roots of F'(-,y) are simple for |y| < 1.
land also for |y| = 1, I suspect]

Consequence of Big Conjecture #1. FEach root xy(y) is
analytic in |y| < 1.



But I conjecture more . ..

Big Conjecture #2. The roots of F(-,y) are non-crossing
in modulus for |y| < 1:

[zo(y)] < faa(y)] < la(y)] < ...
land also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually
separated in modulus by a factor at least |y|, i.e.

ze()] < lyllzpa(y)]  forallk >0
PROOF. Apply the Schwarz lemma to zx(y)/zri1(y).

Consequence for the zeros of C),(y)

Recall
Coly) = —=(n=1)!> _wily)™
k

and use a variant of the Beraha—Kahane-Weiss theorem [A.D.S.,
arXiv:cond-mat/0012369, Theorem 3.2] == the limit points of
zeros of C, are the values y for which the zero of minimum modulus
of F'(-,y) is nonunique.

So if F'(-,y) has a unique zero of minimum modulus for all y € D
(a weakened form of Big Conjecture #2), then the zeros of C,, do
not accumulate anywhere in the open unit disc.

[ actually conjecture more (based on computations up to n & 80):

Big Conjecture #3. For each n, C,(y) has no zeros with |y| < 1.
land, T suspect, no zeros with |y| = 1 except the point y = 1]
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What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 < y < 1, all the roots of F(-,y)
are simple and negative real.

Corollary: Each root x(y) is analytic in a complex neighborhood
of the interval [0, 1).

[Real-variables methods give further information about the roots
z(y) for 0 <y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series xx(Yy) ...

11



Let MATHEMATICA run for a weekend . ..

4

) 6
11,3 11y + 1_76y 4 %y

—zo(y) = 1+ 3y + 59" + 5y’ + 5

493 7 . 163.8 , 323.9 . 160310 57283 11
t1Y T3y Ty T oVt 1332409

170021 12 , 34017113 . 22565, 14
+ oY T SomoY T 55206V

+ ... + terms through order ¢

and all the coefficients (so far) are nonnegative!
e Very recently I have computed z(y) through order y1%3%3,

e [ also have shorter series for xx(y) for k > 1.

Big Conjecture #4. For each k, the series —xi(y) has all
nonnegative coefficients.

Combine this with the known analyticity for 0 < y < 1, and
Pringsheim gives:

Consequence of Big Conjecture #4. FEach root xi(y) is
analytic in the open unit disc.

12



But more is true ...

Look at the reciprocal of xo(y):

1
1 12 13 14 1 5 7 6
- —5—19—59—1—9—4—9—@&’
To(y)
17 113
96Y 768y 69123/ 23040?/ 4608y
203 12 737 3107, 14
921607 276480y 1658880

— ... — terms through order y%

and all the coefficients (so far) beyond the constant term are nonpositive!
Big Conjecture #5. For cach k, the series —(k + 1)y =% /x4 (y)
has all nonpositive coeflicients after the constant term 1.
[This implies the preceding conjecture, but is stronger.|
e Relative simplicity of the coefficients of —1/x¢(y) compared to
those of —xy(y) — simpler combinatorial interpretation?
e Note that xx(y) — —oo as y T 1 (this is fairly easy to prove).
So 1/xp(y) — 0. Therefore:

Consequence of Big Conjecture #5. For each k., the coeffi-
cients (after the constant term) in the series —(k + 1)y~ /a1 (y) are
the probabilities for a positive-integer-valued random variable.

What might such a random variable be???
Could this approach be used to prove Big Conjecture #57

(see also the next two slides)
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But I conjecture that even more is true . ..

and recall that —zo(y) = lim C] (y)~'/"

Define C,, (y) = 1 — 1 Tim

Big Conjecture #6. For each n,
(a) the series C (yy)~Y/" has all nonnegative coefficients,
and even more strongly,

(b) the series C ()" has all nonpositive coefficients after the
constant term 1.

Since C(y) > 0 for 0 < y < 1, Pringsheim shows that
Big Conjecture #6a implies Big Conjecture #3:

For each n, C\,(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b == for each n, the coefficients in the
— %

series 1 — C' (y)l/ " are the probabilities for a positive-integer-valued

n
random variable.

Such a random variable would generalize the one for —1/xy(y) in
roughly the same way that the binomial generalizes the Poisson.
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What might such a random variable be?

— x

e Probability generating function P,(y) =1 — C, (y)"/"

Ch(y)
(—1)"1(n—1)

e Presumably has something to do with random graphs on n vertices

where C (y) =

e Maybe some structure built on top of a random graph
(some kind of tree? Markov chain?)

Try to understand the first two cases:
Pyfy) = 1—(1—y)'?
1 1,2 , 1.3
= Y TRYT T Y T 1289 - 256y T 1024y

429 715 2431
oY T 32768y + 65536y + 262144y "+

~ Sibuya() random variable

Py(y) = 1—(1—3y+ L3
1 1.2 1.3 1 4, 1.5
= 3y + 4y + 243/ + Y Y+ 288y

320 9 553
+576y + 23049 T+ Y T 82944y S

How are these related to random graphs on 2 or 3 vertices?

[ have an analytic proof that Ps(y) > 0, but it doesn’t shed any light
on the possible probabilistic interpretation.

Jim Fill has a probabilistic interpretation for n = 2,3 in terms of
birth-and-death chains, but it doesn’t seem to generalize to n > 4.
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A more general approach to the leading root z((y)
(When stumped, generalize .. .!)

Consider a formal power series

00
_ Z a, 2" yn(n—l)/Q
n=0

normalized to ay = a3 = 1, or more generally
(0.8}

flzy) = > anly)z

n

where
() ao(0) = a1(0) =
(b) a,(0) =0 for n > 2 and
() anly) = O(y”

Coefhicients can lie in an arbitrary commutative ring R.

") with lim v, = oco.
n—oo

In this general situation there is always a leading root xy(y),
considered as a formal power series.

Examples:

e The “deformed exponential function”

o0 n

2t n\n—
Play) = ) —y"" e
n=0
e The “partial theta function”
Op(a,y) = Y ay" VP2
n=0
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e A ¢-series interpolation:

R N "y

For ¢ = 0 it reduces to the partial theta function.
For ¢ = 1 it reduces to the deformed exponential function.

e A simpler interpolation ... the “deformed binomial series”:

Start from the Taylor series for the binomial f(z) = (1— pa)~'/*

[it is convenient to parametrize it in this way]

n—1)/2

and introduce factors y™ as usual:

Fu(z,y) = i(—u)” (_1/“) (=12

n
n=0

o0 n—1
1 . n o nin—
= > L (TTa+ ) atyros
n=0 7=0
For p = 0 it reduces to the deformed exponential function.
For =1 it reduces to the partial theta function.

e Going farther ... the “deformed hypergeometric series”:

Note that exponential (oF) and binomial (1F7) are simplest cases
of the hypergeometric series ,fp. We can apply “y-deformation”

process to HFp:

[ M1y -5
b G

where

= n ﬁfxn n(n—
xy) = D (L) o ()" oy

n=0
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Partial theta function 9

Empirically &)(y) seems to have positive coefficients:

Eo(y) = 1+y+2y° +49° + 9y* + 21y° + 525 + 133y" + 3514°
+948y” 4+ 2610y'° + ... + terms through order y%%

And 1/&(y) seems to have negative coefficients after the constant term 1:

Soly) ' = 1—y—y" —y’ —2y" — 49° — 10y° — 25y" — 66y°
—178y? — 490y — ... — terms through order y5%

Indeed, 1/&(y)? seems to have this property:

&) = 1=~y —y =2 — Ty’ — 18y — 50y°
—138y” — 386y'Y — ... — terms through order y%%

Can this be proven?

Yes: By g-series identities.
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The deformed binomial series

e Can prove (using explicit implicit function formula) that

00 Pn
Slyip) = 1+ d(u) y"
n=1 n

where P, (1) is a polynomial of degree n with integer coefficients
and d,, are explicit integers.

e Empirically P,(u) has two interesting positivity properties:

(a) P,(u) has all strictly positive coefficients.
(b) Pu(p) > 0 for p > —1.

Can any of this be proven?

Alas, I have no idea ... (except for the partial theta function, y = 1)

x,y):

the polynomials P,(p1, .. ., i) are coefficientwise positive

e This positivity even appears to extend to the
H1y -5 Hp

deformed hypergeometric series ,Fi (

jointly in the variables p1, ..., pt.

Why?

[ wish I knew . ..
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Joyeux anniversaire, Vincent!
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