Some wonderful conjectures (but very few theorems) at the boundary between analysis, combinatorics and probability

Alan Sokal New York University / University College London

Conference in honor of Vincent Rivasseau Paris, 25 November 2015

References:

- 1. Roots of a formal power series $f(x,y) = \sum_{n=0}^{\infty} a_n(y) x^n$, with applications to graph enumeration and *q*-series, Series of 4 lectures at Queen Mary (London), March-April 2011, http://www.maths.qmw.ac.uk/~pjc/csgnotes/sokal/
- The leading root of the partial theta function, arXiv:1106.1003 [math.CO], Adv. Math. 229, 2603–2621 (2012).

Vincent has always been a master of combinatorics ...

The multiple forest formula states:

Theorem IV.1 (The Algebraic Brydges-Kennedy Jungle Formula)

$$\exp\left(\sum_{\substack{l\in\mathcal{P}_{n}\\1\leq k\leq m}}u_{l}^{k}\right) = \sum_{\substack{\mathcal{F}=(\mathfrak{F}_{1},\ldots,\mathfrak{F}_{m})\\m-jungle}}\left(\prod_{l\in\mathfrak{F}_{m}}\int_{0}^{1}dh_{l}\right)\left(\prod_{k=1}^{m}\left(\prod_{l\in\mathfrak{F}_{k}\setminus\mathfrak{F}_{k-1}}u_{l}^{k}\right)\right)$$
$$\cdot \exp\left(\sum_{k=1}^{m}\sum_{l\in\mathcal{P}_{n}}h_{l}^{\mathcal{F},k}(\mathbf{h}).u_{l}^{k}\right)$$
(IV.1)

where $\mathfrak{F}_0 = 0$ by convention, **h** is the vector $(h_l)_{l \in \mathfrak{F}_m}$ and the functions $h_{\{ij\}}^{\mathcal{F},k}(\mathbf{h})$ are defined in the following manner:

- If i and j are not connected by \mathfrak{F}_k let $h_{\{ij\}}^{\mathcal{F},k}(\mathbf{h}) = 0$.

- If i and j are connected by \mathfrak{F}_k but not by \mathfrak{F}_{k-1} let

$$h_{\{ij\}}^{\mathcal{F},k}(\mathbf{h}) = \inf \left\{ h_l, l \in L_{\mathfrak{F}_k}\{ij\} \cap (\mathfrak{F}_k \setminus \mathfrak{F}_{k-1})
ight\}$$

(recall that $L_{\mathfrak{F}}\{ij\}$ is the unique path in the forest \mathfrak{F} connecting i to j).

- If i and j are connected by \mathfrak{F}_{k-1} let $h_{\{ij\}}^{\mathcal{F},k}(\mathbf{h}) = 1$.

Proof: By induction. The case m = 1 was treated in Section II. For the induction step from m to m + 1, we sum over the last forest \mathfrak{F}_{m+1} :

$$\sum_{\substack{\mathcal{F} = (\mathfrak{F}_{1}, \dots, \mathfrak{F}_{m+1}) \\ (m+1) - \text{jungle}}} \left(\prod_{l \in \mathfrak{F}_{m+1}} \int_{0}^{1} dh_{l} \right) \left(\prod_{k=1}^{m+1} \left(\prod_{l \in \mathfrak{F}_{k} \setminus \mathfrak{F}_{k-1}} u_{l}^{k} \right) \right) \exp \left(\sum_{k=1}^{m+1} \sum_{l \in \mathcal{P}_{n}} h_{l}^{\mathcal{F}, k}(\mathbf{h}) . u_{l}^{k} \right)$$

$$= \sum_{\substack{\mathcal{F}' = (\mathfrak{F}_{1}, \dots, \mathfrak{F}_{m}) \\ m-\text{jungle}}} \left(\prod_{l \in \mathfrak{F}_{m}} \int_{0}^{1} dh_{l} \right) \left(\prod_{k=1}^{m} \left(\prod_{l \in \mathfrak{F}_{k} \setminus \mathfrak{F}_{k-1}} u_{l}^{k} \right) \right) \exp \left(\sum_{k=1}^{m} \sum_{l \in \mathcal{P}_{n}} h_{l}^{\mathcal{F}', k}(\mathbf{h}') . u_{l}^{k} \right)$$

$$\cdot \sum_{\substack{\mathfrak{F}_{m+1} \\ \mathfrak{F}_{m} \subset \mathfrak{F}_{m+1}}} \left(\prod_{l \in \mathfrak{F}_{m+1} \setminus \mathfrak{F}_{m}} \int_{0}^{1} dh_{l} \right) \left(\prod_{l \in \mathfrak{F}_{m+1} \setminus \mathfrak{F}_{m}} u_{l}^{m+1} \right) \exp \left(\sum_{l \in \mathcal{P}_{n}} h_{l}^{\mathcal{F}, m+1}(\mathbf{h}) . u_{l}^{m+1} \right)$$

$$(IV.2)$$

where $\mathbf{h} = (h_l)_{l \in \mathfrak{F}_{m+1}}$, $\mathbf{h}' = (h_l)_{l \in \mathfrak{F}_m}$ and we have noted that if $1 \leq k \leq m$ then $h_l^{\mathcal{F},k}(\mathbf{h}) = h_l^{\mathcal{F}',k}(\mathbf{h}')$. To perform the summation over \mathfrak{F}_{m+1} , we will use the forest formula of section II and our favorite argument of forgetting the details of the tree structure up to \mathfrak{F}_m , to concentrate on what \mathfrak{F}_{m+1} brings as new connections between the existing clusters. We introduce the partition \mathcal{D} of I_n created by $\mathfrak{F}_m = \{l_1, \ldots, l_\nu\}$ and the u-forest on $\mathcal{D}, \ \overline{\mathfrak{F}}_{m+1} = \{\overline{l}_1, \ldots, \overline{l}_{\tau-\nu}\}$ induced by $\mathfrak{F}_{m+1} \setminus \mathfrak{F}_m = \{l_{\nu+1}, \ldots, l_{\tau}\}$ with $\nu \leq \tau$. The definitions are the same as in the proof of Lemma II.2 except that we have u-forests instead of o-forests.

For a link $\{ab\}$ between two elements a and b of \mathcal{D} , let $\overline{u}_{\{ab\}} = \sum_{i \in a, j \in b} u_{\{ij\}}^{m+1}$. Summing over \mathfrak{F}_{m+1} , u-forest on I_n containing \mathfrak{F}_m , with the "propagators" $u_{\{ij\}}^{m+1}$ Vol. 1 No. 1 pp. 1–100 2014

Combinatorics, Physics and their Interactions

Editors-in-Chief Gérard H. E. Duchamp Vincent Rivasseau Alan Sokal

Managing Editor Adrian Tanasa

Editors

Abdelmalek Abdesselam Nima Arkani-Hamed François Bergeron Pawel Blasiak Christian Borgs Mireille Bousquet-Mélou Joanna Ellis-Monaghan Bertrand Eynard Philippe Di Francesco Tony Guttmann Andrzej Horzela Gil Kalai Richard Kenyon Toshitake Kohno Gleb Koshevoy Roman Kotecký Christian Krattenthaler Luc Lapointe

Jacques Magnen Andrea Montanari Frédéric Patras Karol Penson

Renate Loll

Karol Penson Gilles Schaeffer Robert Shrock Jean-Yves Thibon Christophe Tollu

European Mathematical Society

The deformed exponential function $F(x, y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$

- Defined for complex x and y satisfying $|y| \leq 1$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- $F(\,\cdot\,,y)$ is entire for each $y\in\overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

Applications:

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Enumeration of connected graphs, generating function for Tutte polynomials on K_n (also acyclic digraphs, inversions of trees, ...)
- Functional-differential equation: F'(x) = F(yx) where $' = \partial/\partial x$
- Complex analysis: Whittaker and Goncharov constants

Application to enumeration of connected graphs

- Let $a_{n,m} = \#$ graphs with n labelled vertices and m edges
- Generating polynomial $A_n(v) = \sum_m a_{n,m} v^m$
- Exponential generating function $A(x, v) = \sum_{n=0}^{\infty} \frac{x^n}{n!} A_n(v)$

• Of course
$$a_{n,m} = {\binom{n(n-1)/2}{m}} \implies A_n(v) = (1+v)^{n(n-1)/2} \implies$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} A_n(v) = F(x, 1+v)$$

- Now let $c_{n,m} = \#$ connected graphs with *n* labelled vertices and *m* edges
- Generating polynomial $C_n(v) = \sum_m c_{n,m} v^m$
- Exponential generating function $C(x, v) = \sum_{n=1}^{\infty} \frac{x^n}{n!} C_n(v)$
- No simple explicit formula for $C_n(v)$ is known, but ...
- The exponential formula tells us that $C(x, v) = \log A(x, v)$, i.e.

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} C_n(v) = \log F(x, 1+v)$$

[see Tutte (1967) and Scott–A.D.S., arXiv:0803.1477 for generalizations to the Tutte polynomials of the complete graphs K_n]

- Usually considered as formal power series
- But series are *convergent* if $|1 + v| \le 1$ [see also Flajolet–Salvy–Schaeffer (2004)]

Elementary analytic properties of $F(x, y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$

•
$$y = 0$$
: $F(x, 0) = 1 + x$

• 0 < |y| < 1: $F(\cdot, y)$ is a nonpolynomial entire function of order 0:

$$F(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$

where $\sum |x_k(y)|^{-\alpha} < \infty$ for every $\alpha > 0$

•
$$y = 1$$
: $F(x, 1) = e^x$

• |y| = 1 with $y \neq 1$: $F(\cdot, y)$ is an entire function of order 1 and type 1:

$$F(x,y) = e^x \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right) e^{x/x_k(y)}$$

where $\sum |x_k(y)|^{-\alpha} < \infty$ for every $\alpha > 1$

[see also Ålander (1914) for y a root of unity; Valiron (1938) and Eremenko–Ostrovskii (2007) for y not a root of unity]

• |y| > 1: The series $F(\cdot, y)$ has radius of convergence 0

Consequences for $C_n(v)$

• Make change of variables y = 1 + v:

$$\overline{C}_n(y) = C_n(y-1)$$

• Then for |y| < 1 we have

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} \overline{C}_n(y) = \log F(x,y) = \sum_k \log\left(1 - \frac{x}{x_k(y)}\right)$$

and hence

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n} \quad \text{for all } n \ge 1$$

(also holds for $n \ge 2$ when |y| = 1)

- This is a *convergent* expansion for $\overline{C}_n(y)$
- In particular, gives large-n asymptotic behavior

$$\overline{C}_{n}(y) = -(n-1)! x_{0}(y)^{-n} \left[1 + O(e^{-\epsilon n})\right]$$

whenever $F(\cdot, y)$ has a unique root $x_0(y)$ of minimum modulus

Question: What can we say about the roots $x_k(y)$?

Small-y expansion of roots $x_k(y)$

• For small |y|, we have F(x, y) = 1 + x + O(y), so we expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755)$

• More generally, for each integer $k \ge 0$, write $x = \xi y^{-k}$ and study

$$F_k(\xi, y) = y^{k(k+1)/2} F(\xi y^{-k}, y) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} y^{(n-k)(n-k-1)/2}$$

Sum is dominated by terms n = k and n = k + 1; gives root

$$x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n \right]$$

Rouché argument valid for $|y| \leq 0.207875$ uniformly in k: all roots are simple and given by convergent expansion $x_k(y)$

• Can also use theta function in Rouché (Eremenko)

Might these series converge for all |y| < 1?

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- 1. Collision of roots (\rightarrow branch point)
- 2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in the open unit disc \mathbb{D} (except of course at y = 0).

In fact, for any compact subset $K \subset \mathbb{D}$ and any $\epsilon > 0$, there exists an integer k_0 such that for all $y \in K \setminus \{0\}$ we have:

- (a) The function $F(\cdot, y)$ has exactly k_0 zeros (counting multiplicity) in the disc $|x| < k_0 |y|^{-(k_0 - \frac{1}{2})}$, and
- (b) In the region $|x| \geq k_0 |y|^{-(k_0 \frac{1}{2})}$, the function $F(\cdot, y)$ has a simple zero within a factor $1 + \epsilon$ of $-(k+1)y^{-k}$ for each $k \geq k_0$, and no other zeros.
 - Proof is based on comparison with a theta function (whose roots are known by virtue of Jacobi's product formula)
 - Conjecture that roots cannot escape to infinity even in the closed unit disc except at y = 1

Big Conjecture #1. All roots of $F(\cdot, y)$ are simple for |y| < 1. [and also for |y| = 1, I suspect]

Consequence of Big Conjecture #1. Each root $x_k(y)$ is analytic in |y| < 1.

But I conjecture more ...

Big Conjecture #2. The roots of $F(\cdot, y)$ are non-crossing *in modulus* for |y| < 1:

$$|x_0(y)| < |x_1(y)| < |x_2(y)| < \dots$$

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually separated in modulus by a factor at least |y|, i.e.

$$|x_k(y)| < |y| |x_{k+1}(y)|$$
 for all $k \ge 0$

PROOF. Apply the Schwarz lemma to $x_k(y)/x_{k+1}(y)$.

Consequence for the zeros of $\overline{C}_n(y)$

Recall

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$

and use a variant of the Beraha–Kahane–Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2] \implies the limit points of zeros of \overline{C}_n are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is nonunique.

So if $F(\cdot, y)$ has a *unique* zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of Big Conjecture #2), then the zeros of \overline{C}_n do not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to $n \approx 80$):

Big Conjecture #3. For each n, $\overline{C}_n(y)$ has no zeros with |y| < 1. [and, I suspect, no zeros with |y| = 1 except the point y = 1] What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For $0 \le y < 1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary: Each root $x_k(y)$ is analytic in a complex neighborhood of the interval [0, 1).

[Real-variables methods give further information about the roots $x_k(y)$ for $0 \le y < 1$: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the series $x_k(y) \ldots$

Let MATHEMATICA run for a weekend ...

$$\begin{aligned} -x_0(y) &= 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 \\ &+ \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} \\ &+ \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} \\ &+ \dots + \text{ terms through order } y^{899} \end{aligned}$$

and all the coefficients (so far) are nonnegative!

- Very recently I have computed $x_0(y)$ through order y^{16383} .
- I also have shorter series for $x_k(y)$ for $k \ge 1$.

Big Conjecture #4. For each k, the series $-x_k(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \leq y < 1$, and Pringsheim gives:

Consequence of Big Conjecture #4. Each root $x_k(y)$ is analytic in the open unit disc.

But more is true ...

Look at the *reciprocal* of $x_0(y)$:

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$
$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$
$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{165880}y^{14}$$
$$- \dots - \text{ terms through order } y^{899}$$

and all the coefficients (so far) beyond the constant term are *nonpositive*!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all *nonpositive* coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.]

- Relative simplicity of the coefficients of $-1/x_0(y)$ compared to those of $-x_0(y) \longrightarrow$ simpler combinatorial interpretation?
- Note that $x_k(y) \to -\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1/x_k(y) \to 0$. Therefore:

Consequence of Big Conjecture #5. For each k, the coefficients (after the constant term) in the series $-(k+1)y^{-k}/x_k(y)$ are the *probabilities* for a positive-integer-valued random variable.

What might such a random variable be??? Could this approach be used to *prove* Big Conjecture #5? (see also the next two slides) But I conjecture that even more is true ...

Define
$$\overline{C}_n^{\star}(y) = \frac{\overline{C}_n(y)}{(-1)^{n-1}(n-1)!}$$
 and recall that $-x_0(y) = \lim_{n \to \infty} \overline{C}_n^{\star}(y)^{-1/n}$

Big Conjecture #6. For each n,

(a) the series $\overline{C}_n^{\star}(y)^{-1/n}$ has all nonnegative coefficients,

and even more strongly,

(b) the series $\overline{C}_n^{\star}(y)^{1/n}$ has all nonpositive coefficients after the constant term 1.

Since $\overline{C}_n^{\star}(y) > 0$ for $0 \leq y < 1$, Pringsheim shows that Big Conjecture #6a implies Big Conjecture #3:

For each n, $\overline{C}_n(y)$ has no zeros with |y| < 1.

Moreover, Big Conjecture #6b \implies for each n, the coefficients in the series $1 - \overline{C}_n^{\star}(y)^{1/n}$ are the *probabilities* for a positive-integer-valued random variable.

Such a random variable would generalize the one for $-1/x_0(y)$ in roughly the same way that the binomial generalizes the Poisson. What might such a random variable be?

- Probability generating function $P_n(y) = 1 \overline{C}_n^{\star}(y)^{1/n}$ where $\overline{C}_n^{\star}(y) = \frac{\overline{C}_n(y)}{(-1)^{n-1}(n-1)!}$
- Presumably has something to do with random graphs on n vertices
- Maybe some structure built on top of a random graph (some kind of tree? Markov chain?)

Try to understand the first two cases:

$$P_{2}(y) = 1 - (1 - y)^{1/2}$$

= $\frac{1}{2}y + \frac{1}{8}y^{2} + \frac{1}{16}y^{3} + \frac{5}{128}y^{4} + \frac{7}{256}y^{5} + \frac{21}{1024}y^{6}$
+ $\frac{33}{2048}y^{7} + \frac{429}{32768}y^{8} + \frac{715}{65536}y^{9} + \frac{2431}{262144}y^{10} + \dots$
~ Sibuya $(\frac{1}{2})$ random variable

$$P_{3}(y) = 1 - (1 - \frac{3}{2}y + \frac{1}{2}y^{3})^{1/3}$$

= $\frac{1}{2}y + \frac{1}{4}y^{2} + \frac{1}{24}y^{3} + \frac{1}{24}y^{4} + \frac{1}{48}y^{5} + \frac{5}{288}y^{6}$
+ $\frac{7}{576}y^{7} + \frac{23}{2304}y^{8} + \frac{329}{41472}y^{9} + \frac{553}{82944}y^{10} + \dots$

How are these related to random graphs on 2 or 3 vertices?

I have an analytic proof that $P_3(y) \succeq 0$, but it doesn't shed any light on the possible probabilistic interpretation.

Jim Fill has a probabilistic interpretation for n = 2, 3 in terms of birth-and-death chains, but it doesn't seem to generalize to $n \ge 4$.

A more general approach to the leading root $x_0(y)$ (When stumped, generalize ...!)

Consider a *formal power series*

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

normalized to $\alpha_0 = \alpha_1 = 1$, or more generally

$$f(x,y) = \sum_{n=0}^{\infty} a_n(y) x^n$$

where

(a)
$$a_0(0) = a_1(0) = 1;$$

(b) $a_n(0) = 0$ for $n \ge 2;$ and
(c) $a_n(y) = O(y^{\nu_n})$ with $\lim_{n \to \infty} \nu_n = \infty.$

Coefficients can lie in an arbitrary commutative ring R.

In this general situation there is always a leading root $x_0(y)$, considered as a *formal power series*.

Examples:

• The "deformed exponential function"

$$F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$$

• The "partial theta function"

$$\Theta_0(x,y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$$

• A *q*-series interpolation:

$$\widetilde{R}(x,y,q) = \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(1+q)(1+q+q^2) \cdots (1+q+\ldots+q^{n-1})}$$

For q = 0 it reduces to the partial theta function. For q = 1 it reduces to the deformed exponential function.

• A simpler interpolation ... the "deformed binomial series":

Start from the Taylor series for the binomial $f(x) = (1 - \mu x)^{-1/\mu}$

[it is convenient to parametrize it in this way] and introduce factors $y^{n(n-1)/2}$ as usual:

$$F_{\mu}(x,y) = \sum_{n=0}^{\infty} (-\mu)^n {\binom{-1/\mu}{n}} x^n y^{n(n-1)/2}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{j=0}^{n-1} (1+j\mu) \right) x^n y^{n(n-1)/2}$$

For $\mu = 0$ it reduces to the deformed exponential function. For $\mu = 1$ it reduces to the partial theta function.

• Going farther ... the "deformed hypergeometric series":

Note that exponential $({}_{0}F_{0})$ and binomial $({}_{1}F_{0})$ are simplest cases of the hypergeometric series ${}_{p}F_{0}$. We can apply "y-deformation" process to ${}_{p}F_{0}$:

$${}_{p}F_{0}^{*}\begin{pmatrix} \mu_{1}, \ldots, \mu_{p} \\ - \\ \end{pmatrix} = \sum_{n=0}^{\infty} (1; \mu_{1})^{\overline{n}} \cdots (1; \mu_{p})^{\overline{n}} \frac{x^{n}}{n!} y^{n(n-1)/2}$$

where

$$(1;\mu)^{\overline{n}} = \prod_{j=0}^{n-1} (1+j\mu)$$

Partial theta function Θ_0

Empirically $\xi_0(y)$ seems to have positive coefficients:

$$\xi_0(y) = 1 + y + 2y^2 + 4y^3 + 9y^4 + 21y^5 + 52y^6 + 133y^7 + 351y^8 + 948y^9 + 2610y^{10} + \dots + \text{ terms through order } y^{6999}$$

And $1/\xi_0(y)$ seems to have negative coefficients after the constant term 1:

$$\xi_0(y)^{-1} = 1 - y - y^2 - y^3 - 2y^4 - 4y^5 - 10y^6 - 25y^7 - 66y^8$$

-178y⁹ - 490y¹⁰ - ... - terms through order y⁶⁹⁹⁹

Indeed, $1/\xi_0(y)^2$ seems to have this property:

$$\xi_0(y)^{-2} = 1 - 2y - y^2 - y^4 - 2y^5 - 7y^6 - 18y^7 - 50y^8$$

-138y⁹ - 386y¹⁰ - ... - terms through order y⁶⁹⁹⁹

Can this be proven?

Yes: By q-series identities.

The deformed binomial series

• Can prove (using explicit implicit function formula) that

$$\xi_0(y;\mu) = 1 + \sum_{n=1}^{\infty} \frac{P_n(\mu)}{d_n} y^n$$

where $P_n(\mu)$ is a polynomial of degree *n* with integer coefficients and d_n are explicit integers.

- Empirically $P_n(\mu)$ has two interesting positivity properties:
 - (a) $P_n(\mu)$ has all strictly positive coefficients.
 - (b) $P_n(\mu) > 0$ for $\mu > -1$.

Can any of this be proven?

Alas, I have no idea . . . (except for the partial theta function, $\mu = 1$)

• This positivity even appears to extend to the deformed hypergeometric series ${}_{p}F_{0}^{*}\begin{pmatrix} \mu_{1}, \ldots, \mu_{p} & x, y \end{pmatrix}$:

the polynomials $P_n(\mu_1, \ldots, \mu_p)$ are coefficientwise positive jointly in the variables μ_1, \ldots, μ_p .

Why?

I wish I knew ...

Joyeux anniversaire, Vincent!