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Vincent has always been a master of combinatorics . . .
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The deformed exponential function F (x, y) =

∞∑
n=0

xn

n!
yn(n−1)/2

• Defined for complex x and y satisfying |y| ≤ 1

• Analytic in C× D, continuous in C× D

• F ( · , y) is entire for each y ∈ D

• Valiron (1938): “from a certain viewpoint the simplest entire

function after the exponential function”

Applications:

• Statistical mechanics: Partition function of one-site lattice gas

• Combinatorics: Enumeration of connected graphs,

generating function for Tutte polynomials on Kn

(also acyclic digraphs, inversions of trees, . . . )

• Functional-differential equation: F ′(x) = F (yx) where ′ = ∂/∂x

• Complex analysis: Whittaker and Goncharov constants
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Application to enumeration of connected graphs

• Let an,m = # graphs with n labelled vertices and m edges

• Generating polynomial An(v) =
∑
m
an,m v

m

• Exponential generating function A(x, v) =
∞∑
n=0

xn

n!
An(v)

• Of course an,m =
(
n(n−1)/2

m

)
=⇒ An(v) = (1 + v)n(n−1)/2 =⇒

∞∑
n=0

xn

n!
An(v) = F (x, 1 + v)

• Now let cn,m = # connected graphs with n labelled vertices

and m edges

• Generating polynomial Cn(v) =
∑
m
cn,m v

m

• Exponential generating function C(x, v) =
∞∑
n=1

xn

n!
Cn(v)

• No simple explicit formula for Cn(v) is known, but . . .

• The exponential formula tells us that C(x, v) = logA(x, v), i.e.
∞∑
n=1

xn

n!
Cn(v) = logF (x, 1 + v)

[see Tutte (1967) and Scott–A.D.S., arXiv:0803.1477 for generalizations

to the Tutte polynomials of the complete graphs Kn]

• Usually considered as formal power series

• But series are convergent if |1 + v| ≤ 1

[see also Flajolet–Salvy–Schaeffer (2004)]
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Elementary analytic properties of F (x, y) =

∞∑
n=0

xn

n!
yn(n−1)/2

• y = 0: F (x, 0) = 1 + x

• 0 < |y| < 1: F ( · , y) is a nonpolynomial entire function

of order 0:

F (x, y) =

∞∏
k=0

(
1 − x

xk(y)

)
where

∑
|xk(y)|−α <∞ for every α > 0

• y = 1: F (x, 1) = ex

• |y| = 1 with y 6= 1: F ( · , y) is an entire function of order 1

and type 1:

F (x, y) = ex
∞∏
k=0

(
1 − x

xk(y)

)
ex/xk(y) .

where
∑
|xk(y)|−α <∞ for every α > 1

[see also Ålander (1914) for y a root of unity; Valiron (1938) and

Eremenko–Ostrovskii (2007) for y not a root of unity]

• |y| > 1: The series F ( · , y) has radius of convergence 0
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Consequences for Cn(v)

• Make change of variables y = 1 + v:

Cn(y) = Cn(y − 1)

• Then for |y| < 1 we have

∞∑
n=1

xn

n!
Cn(y) = logF (x, y) =

∑
k

log
(

1 − x

xk(y)

)
and hence

Cn(y) = −(n− 1)!
∑
k

xk(y)−n for all n ≥ 1

(also holds for n ≥ 2 when |y| = 1)

• This is a convergent expansion for Cn(y)

• In particular, gives large-n asymptotic behavior

Cn(y) = −(n− 1)! x0(y)−n
[
1 + O(e−εn)

]
whenever F ( · , y) has a unique root x0(y) of minimum modulus

Question: What can we say about the roots xk(y)?
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Small-y expansion of roots xk(y)

• For small |y|, we have F (x, y) = 1 + x + O(y), so we expect a

convergent expansion

x0(y) = −1 −
∞∑
n=1

any
n

(easy proof using Rouché: valid for |y| . 0.441755)

• More generally, for each integer k ≥ 0, write x = ξy−k and

study

Fk(ξ, y) = yk(k+1)/2F (ξy−k, y) =

∞∑
n=0

ξn

n!
y(n−k)(n−k−1)/2

Sum is dominated by terms n = k and n = k + 1; gives root

xk(y) = −(k + 1)y−k

[
1 +

∞∑
n=1

a(k)
n yn

]
Rouché argument valid for |y| . 0.207875 uniformly in k:

all roots are simple and given by convergent expansion xk(y)

• Can also use theta function in Rouché (Eremenko)
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Might these series converge for all |y| < 1?

Two ways that xk(y) could fail to be analytic for |y| < 1:

1. Collision of roots (→ branch point)

2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in

the open unit disc D (except of course at y = 0).

In fact, for any compact subset K ⊂ D and any ε > 0, there exists

an integer k0 such that for all y ∈ K r {0} we have:

(a) The function F ( · , y) has exactly k0 zeros (counting multiplicity)

in the disc |x| < k0|y|−(k0−1
2), and

(b) In the region |x| ≥ k0|y|−(k0−1
2), the function F ( · , y) has a

simple zero within a factor 1 + ε of −(k+ 1)y−k for each k ≥ k0,

and no other zeros.

• Proof is based on comparison with a theta function (whose roots

are known by virtue of Jacobi’s product formula)

• Conjecture that roots cannot escape to infinity even in the closed

unit disc except at y = 1

Big Conjecture #1. All roots of F ( · , y) are simple for |y| < 1.

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #1. Each root xk(y) is

analytic in |y| < 1.
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But I conjecture more . . .

Big Conjecture #2. The roots of F ( · , y) are non-crossing

in modulus for |y| < 1:

|x0(y)| < |x1(y)| < |x2(y)| < . . .

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually

separated in modulus by a factor at least |y|, i.e.

|xk(y)| < |y| |xk+1(y)| for all k ≥ 0

Proof. Apply the Schwarz lemma to xk(y)/xk+1(y).

Consequence for the zeros of Cn(y)

Recall

Cn(y) = −(n− 1)!
∑
k

xk(y)−n

and use a variant of the Beraha–Kahane–Weiss theorem [A.D.S.,

arXiv:cond-mat/0012369, Theorem 3.2] =⇒ the limit points of

zeros of Cn are the values y for which the zero of minimum modulus

of F ( · , y) is nonunique.

So if F ( · , y) has a unique zero of minimum modulus for all y ∈ D
(a weakened form of Big Conjecture #2), then the zeros of Cn do

not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to n ≈ 80):

Big Conjecture #3. For each n, Cn(y) has no zeros with |y| < 1.

[and, I suspect, no zeros with |y| = 1 except the point y = 1]
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What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 ≤ y < 1, all the roots of F ( · , y)

are simple and negative real.

Corollary: Each root xk(y) is analytic in a complex neighborhood

of the interval [0, 1).

[Real-variables methods give further information about the roots

xk(y) for 0 ≤ y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series xk(y) . . .
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Let Mathematica run for a weekend . . .

−x0(y) = 1 + 1
2y + 1

2y
2 + 11

24y
3 + 11

24y
4 + 7

16y
5 + 7

16y
6

+ 493
1152y

7 + 163
384y

8 + 323
768y

9 + 1603
3840y

10 + 57283
138240y

11

+ 170921
414720y

12 + 340171
829440y

13 + 22565
55296y

14

+ . . . + terms through order y899

and all the coefficients (so far) are nonnegative!

• Very recently I have computed x0(y) through order y16383.

• I also have shorter series for xk(y) for k ≥ 1.

Big Conjecture #4. For each k, the series −xk(y) has all

nonnegative coefficients.

Combine this with the known analyticity for 0 ≤ y < 1, and

Pringsheim gives:

Consequence of Big Conjecture #4. Each root xk(y) is

analytic in the open unit disc.
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But more is true . . .

Look at the reciprocal of x0(y):

− 1

x0(y)
= 1 − 1

2y −
1
4y

2 − 1
12y

3 − 1
16y

4 − 1
48y

5 − 7
288y

6

− 1
96y

7 − 7
768y

8 − 49
6912y

9 − 113
23040y

10 − 17
4608y

11

− 293
92160y

12 − 737
276480y

13 − 3107
1658880y

14

− . . . − terms through order y899

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series −(k + 1)y−k/xk(y)

has all nonpositive coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.]

• Relative simplicity of the coefficients of −1/x0(y) compared to

those of −x0(y) −→ simpler combinatorial interpretation?

• Note that xk(y) → −∞ as y ↑ 1 (this is fairly easy to prove).

So 1/xk(y)→ 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coeffi-

cients (after the constant term) in the series −(k + 1)y−k/xk(y) are

the probabilities for a positive-integer-valued random variable.

What might such a random variable be???
Could this approach be used to prove Big Conjecture #5?

(see also the next two slides)
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But I conjecture that even more is true . . .

DefineC
?
n(y) =

Cn(y)

(−1)n−1(n− 1)!
and recall that−x0(y) = lim

n→∞
C

?
n(y)−1/n

Big Conjecture #6. For each n,

(a) the series C
?
n(y)−1/n has all nonnegative coefficients,

and even more strongly,

(b) the series C
?
n(y)1/n has all nonpositive coefficients after the

constant term 1.

Since C
?
n(y) > 0 for 0 ≤ y < 1, Pringsheim shows that

Big Conjecture #6a implies Big Conjecture #3:

For each n, Cn(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b =⇒ for each n, the coefficients in the

series 1−C ?
n(y)1/n are the probabilities for a positive-integer-valued

random variable.

Such a random variable would generalize the one for −1/x0(y) in

roughly the same way that the binomial generalizes the Poisson.
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What might such a random variable be?

• Probability generating function Pn(y) = 1− C ?
n(y)1/n

where C
?
n(y) =

Cn(y)

(−1)n−1(n− 1)!

• Presumably has something to do with random graphs on n vertices

• Maybe some structure built on top of a random graph

(some kind of tree? Markov chain?)

Try to understand the first two cases:

P2(y) = 1− (1− y)1/2

= 1
2y + 1

8y
2 + 1

16y
3 + 5

128y
4 + 7

256y
5 + 21

1024y
6

+ 33
2048y

7 + 429
32768y

8 + 715
65536y

9 + 2431
262144y

10 + . . .

∼ Sibuya(1
2) random variable

P3(y) = 1− (1− 3
2y + 1

2y
3)1/3

= 1
2y + 1

4y
2 + 1

24y
3 + 1

24y
4 + 1

48y
5 + 5

288y
6

+ 7
576y

7 + 23
2304y

8 + 329
41472y

9 + 553
82944y

10 + . . .

How are these related to random graphs on 2 or 3 vertices?

I have an analytic proof that P3(y) � 0, but it doesn’t shed any light

on the possible probabilistic interpretation.

Jim Fill has a probabilistic interpretation for n = 2, 3 in terms of

birth-and-death chains, but it doesn’t seem to generalize to n ≥ 4.
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A more general approach to the leading root x0(y)
(When stumped, generalize . . . !)

Consider a formal power series

f (x, y) =

∞∑
n=0

αn x
n yn(n−1)/2

normalized to α0 = α1 = 1, or more generally

f (x, y) =

∞∑
n=0

an(y)xn

where

(a) a0(0) = a1(0) = 1;

(b) an(0) = 0 for n ≥ 2; and

(c) an(y) = O(yνn) with lim
n→∞

νn =∞.

Coefficients can lie in an arbitrary commutative ring R.

In this general situation there is always a leading root x0(y),

considered as a formal power series .

Examples:

• The “deformed exponential function”

F (x, y) =

∞∑
n=0

xn

n!
yn(n−1)/2

• The “partial theta function”

Θ0(x, y) =

∞∑
n=0

xn yn(n−1)/2
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• A q-series interpolation:

R̃(x, y, q) =

∞∑
n=0

xn yn(n−1)/2

(1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1)

For q = 0 it reduces to the partial theta function.

For q = 1 it reduces to the deformed exponential function.

• A simpler interpolation . . . the “deformed binomial series”:

Start from the Taylor series for the binomial f (x) = (1−µx)−1/µ

[it is convenient to parametrize it in this way]

and introduce factors yn(n−1)/2 as usual:

Fµ(x, y) =

∞∑
n=0

(−µ)n
(
−1/µ

n

)
xn yn(n−1)/2

=

∞∑
n=0

1

n!

(n−1∏
j=0

(1 + jµ)

)
xn yn(n−1)/2

For µ = 0 it reduces to the deformed exponential function.

For µ = 1 it reduces to the partial theta function.

• Going farther . . . the “deformed hypergeometric series”:

Note that exponential (0F0) and binomial (1F0) are simplest cases

of the hypergeometric series pF0. We can apply “y-deformation”

process to pF0:

pF
∗
0

(
µ1, . . . , µp

—

∣∣∣∣x, y) =

∞∑
n=0

(1;µ1)n · · · (1;µp)
n x

n

n!
yn(n−1)/2

where

(1;µ)n =

n−1∏
j=0

(1 + jµ)
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Partial theta function Θ0

Empirically ξ0(y) seems to have positive coefficients:

ξ0(y) = 1 + y + 2y2 + 4y3 + 9y4 + 21y5 + 52y6 + 133y7 + 351y8

+948y9 + 2610y10 + . . . + terms through order y6999

And 1/ξ0(y) seems to have negative coefficients after the constant term 1:

ξ0(y)−1 = 1− y − y2 − y3 − 2y4 − 4y5 − 10y6 − 25y7 − 66y8

−178y9 − 490y10 − . . . − terms through order y6999

Indeed, 1/ξ0(y)2 seems to have this property:

ξ0(y)−2 = 1− 2y − y2 − y4 − 2y5 − 7y6 − 18y7 − 50y8

−138y9 − 386y10 − . . . − terms through order y6999

Can this be proven?

Yes: By q-series identities.
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The deformed binomial series

• Can prove (using explicit implicit function formula) that

ξ0(y;µ) = 1 +

∞∑
n=1

Pn(µ)

dn
yn

where Pn(µ) is a polynomial of degree n with integer coefficients

and dn are explicit integers.

• Empirically Pn(µ) has two interesting positivity properties:

(a) Pn(µ) has all strictly positive coefficients.

(b) Pn(µ) > 0 for µ > −1.

Can any of this be proven?

Alas, I have no idea . . . (except for the partial theta function, µ = 1)

• This positivity even appears to extend to the

deformed hypergeometric series pF
∗
0

(
µ1, . . . , µp

—

∣∣∣∣x, y):

the polynomials Pn(µ1, . . . , µp) are coefficientwise positive

jointly in the variables µ1, . . . , µp.

Why?

I wish I knew . . .
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Joyeux anniversaire, Vincent!
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