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Plan of the talk

Nonequilibrium dynamics of closed and isolated quantum many body system and
quantum quench.

The quenched Luttinger model.

Rigorous Bosonization method.

Reference: Vieri Mastropietro , ZW “Quantum Quench for inhomogeneous states in the
non-local Luttinger model ’ Physical Reviews B, 91, 085123 (2015)
Langmann Moosavi, Construction by Bosonization of a fermion-phonon model, journal
of mathematical physics, 56, 091902 (2015)



The non-equilibrium physics

Consider a closed many body quantum system of size L that is isolated from the
environment and reservoir; let the system prepared in a non-equilibrium initial state
|Ψ0〉 and time evolves w r t the Hamiltonian H: |Ψt 〉 = e−iHt |Ψ0〉. Then we consider
the fate of the state |Ψ〉 = limt→∞ limL→∞ |Ψt 〉.

Does |Ψ〉 evolves into any steady state or a stationary state;

could we describe the state with thermodynamic ensemble;

could we describe the general properties of such systems without going into the
model detail; namely the universality.



non equilibrium dynamics

these kind of questions are also called thermalizations of isolated systems, dated
back to Von Neumann since 1939: only an academic question since the effect of
environment could not be avoided;

this question becomes interesting again due to the advances of cold atom
experiments; especially the Bose Einstein condensation.

One can prepare such system that is strongly correlated but very weakly coupled
with the environment;



nonequilibrium thermalization

nonequilibrium steady states exist; some are thermal states and some are not;

Integrability plays very important role;



Quantum newton’s cradle; T. Kinoshita, T. Wenger, and D.S. Weiss,Nature (London) 452, 854
(2008).

Consider a system of about 1000 Rb87 atoms in a Harmonic trapping potential at
very low temperature. the density of the Bose gas is prepared such that the
interaction can be taken to be point like-2-body δ function interaction. Then the
cloud is split into two counter-propagating clouds with opposite momentum, by the
laser beam; the two clouds are then climbing up and down the harmonic potential
by conservation of energy;



Quantum newton’s cradle; T. Kinoshita, T. Wenger, and D.S. Weiss,Nature (London) 452, 854
(2008).

The momentum distribution attains a stationary state for any spacial dimension,
when t is big enough; when d = 2, 3 the system relax very quickly and thermalize.
But in one dimension the system relaxes slowly to a non-thermal distribution;



Bose-Hubbard model, S. Trotzky Y.-A. Chen, A. Flesch, I. P. McCulloch, U. SchollwÃűck,
J.Eisert, and I.Bloch, NaturePhys. 8, 325 (2012).

Consider a one dimensional Bosonic lattice system starting from a non-equilibrium
state; the Hamiltonian is chosen to mimic the non-integrable Bose-Hubbard
Hamiltonian:

H =
∑

j

[
− J(â+

j aj+1 + h.c.) + U/2n̂j (n̂j − 1) + K/2n̂j j2
]

(-1)

some observables approach stationary states that are compatible with thermal
ones;

the relaxation process is fast;

more memory of the initial state

more sensitive to approximations;

integrability plays important role for the non-equilibrium dynamics. It would be useful to
have some mathematically rigorous results, as benchmark for experiments or further
approximations;



Quantum quench and Luttinger model

One way to prepare the non equilibrium initial state for a cold atom system is by
quantum quench. Namely we can prepare the system in a state that is an eigenstate of
a Hamiltonian H0, then we suddenly turn on or turn off some interactions by
manipulating the laser beam or optical lattice so that the Hamiltonian becomes
H(λ) = H0 + V (λ). Then we consider the time evolution w.r.t. H(λ).



Quenched Luttinger model

Luttinger model would be a good choice;

1) Better understand the non equilibrium phenomenons.

2) Test the techniques of equilibrium physics. We perform the calculation with both
the Lieb Mattis method and Bosonization formula.



Luttinger model and the Lieb-Mattis solution

The nonlocal Luttinger Hamiltonian is

Hλ =

∫ L/2

−L/2
dx − i(: ψ+

x,1∂xψ
−
x,1 : − : ψ+

x,2∂xψ
−
x,2 :)

+λ

∫ L
2

− L
2

dxdyv(x − y) : ψ+
x,1ψ

−
x,1 :: ψ+

y,2ψ
−
y,2 : (-2)

where

ψ±x,ω = 1√
L

∑
k ak,ωe±ikx , ω = 1, 2, k = 2πn

L with n ∈ N are fermionic creation or
annihilation operators,

v(x) is a smooth short range potential such that |v(x − y)| ≤ e−α|x−y|2 or
|v(x − y)| ≤ 1

(1+|x−y|α)
for α > 1.

Difference from the local Luttinger model for which v(x − y) = δ(x − y). This
causes the ultraviolet divergence, as the Fourier transform doesn’t decay for large
momentum.



The Hamiltonian can be rewritten as

Hλ = H0 + V =
∑
k>0

k [(a+
k,1a−k,1 + a−−k,1a+

−k,1) + (a+
−k,2a−−k,2 + a−k,2a+

k,2)

+
2λ
L

∑
p>0

[ρ1(p)ρ2(−p) + ρ1(−p)ρ2(p)] +
λ

L
v̂(0)N1N2 (-3)

where, if p > 0,

ρω(p) =
∑

k

a+
k+p,ωa−k,ω

N1 =
∑
k>0

(a+
k,1a−k,1 − a−−k,1a+

−k,1) N2 =
∑
k>0

(a+
−k,2a−−k,2 − a−k,2a+

k,2)

The regularization implicit in the above expressions is that ρω(p) must be thought as
limΛ→ι

∑
k χΛ(k)χΛ(k + p)a+

k+p,ωa−k,ω ;



The basic property of the Luttinger model is the validity of the following anomalous
commutation relations,

[ρ1(−p), ρ1(p′)] =
pL
2π
δp,p′ [ρ2(−p), ρ2(p′)] = −

pL
2π
δp,p′ . (-4)

Let |0 > be the ground state of H0, then we have:

ρ2(p)|0 >= 0, ρ1(−p)|0 >= 0. (-5)



Luttinger model and the Lieb-Mattis solution

Introducing the operator T = 1
L
∑

p>0[ρ1(p)ρ1(−p) + ρ2(−p)ρ2(p)] and write
H = (H0 − T ) + (V + T ) = H1 + H2.
H2 can be diagonalized by the following transformation:

eiSH2e−iS = H̃2

=
2π
L

∑
p

sech2φ(p)[ρ1(p)ρ1(−p) + ρ2(−p)ρ2(p)] + E0, (-6)

where

S =
2π
L

∑
p 6=0

φ(p)p−1ρ1(p)ρ2(−p), tanhφ(p) = −
λv(p)

2π
. (-7)



Luttinger model and the Lieb-Mattis solution

Define
D = H̃2 − T =

2π
L

∑
p
σ(p)[ρ1(p)ρ1(−p) + ρ2(−p)ρ2(p)] + E0, (-8)

σ(p) = sech2φ(p)− 1 and we have [H0,D] = 0. and the diagonalization formula for the
Hamiltonian reads:

eiSeiHt e−iS = ei(H0+D)t , (-9)

The average of the two-point function over the ground state reads:

< GS|ψ+
ω,xψ

−
ω,0|GS >=

1
2π

1
−iεωx + 0+

exp
∫ ∞

0
dp

1
p

[
2 sinh2 φp(cos px−1)

]
. (-10)

Asymptotically, for large distances

< GS|ψ+
ω,xψ

−
ω,0|GS >∼ O(|x |−1−η) (-11)

implying that the average of the occupation number over the interacting state is
nk′+εωpF

∼ a + O(k ′η), where a is a nonnegative real number.



For obtaining the above result one should frequently use:

eiεSψ−1,x e−iεS = W1,x R1,xψ
−
1,x (-12)

with c(φ) = cosh εφ− 1, s(φ) = sinh εφ

W ε
1,x =

exp{−
2π
L

∑
p>0

e−0+p

p
[ρ1(−p)eipx − ρ1(p)e−ipx ]c(φ)}

Rε1,x =

exp{−
2π
L

∑
p>0

e−0+p

p
[ρ2(−p)eipx − ρ2(p)e−ipx ]s(φ)}



Quench dynamics of the ground states, M Cazalilla Phys. Rev. Lett. 97 156403 (2006),
Rentrop, J.; Schuricht, D.; Meden, V. New J. Of Phys. 14 075001, (2012)

Let |Ot >= eiHλt |0 >, |0 > is the ground state of H0 but not an eigenstate of H;
(|GS >= eiS |0 >) We have

< Ot |ψ+
ω,xψ

−
ω,y |Ot >λ=< 0|e−iHλtψ+

ω,xψ
−
ω,y eiHλt |0 >, (-13)

and we obtain

< Ot |ψ+
ω,xψ

−
ω,0|Ot >=

i
2π

1
εωx + i0+

(-14)

exp
∫ ι

0
dp
γ(p)

p
{(cos px − 1)(1− cos 2p(σp + 1)t)},

where γ(p) = 4 sinh2 φp cosh2 φp .

lim
t→∞

< Ot |ψ+
ω,xψ

−
ω,0|Ot >=

i
2π

1
εωx + i0+

exp
∫ ∞

0
dp

1
p
{γ(p)(cos px − 1)} (-15)



Evolution of inhomogeneous initial state

let
|It >= eiHλt (eipF xψ+

1,x + e−ipF xψ+
2,x )|0 > . (-16)

n(z) is the regularized particle number

n(z) =
1
2

∑
ρ=±

(ψ̃+
1,z+ρεψ̃

−
2,z + ψ̃+

2,z+ρεψ
−
1,z + ψ+

2,z+ρεψ̃
−
2,z + ψ̃+

1,z+ρεψ̃
−
1,z ) (-17)

< Iλ,t |n(z)|Iλ,t > is sum of several terms

〈0|ψ̃−1,x eiHt ψ̃+
1,z+ρεψ̃

−
2,ze−iHt ψ̃+

2,x |0〉+

〈0| ψ̃−2,x eiHt ψ̃+
2,z+ρεψ

−
1,ze−iHtψ+

1,x |0〉+

〈0| ψ̃−1,x eiHt ψ̃+
2,z+ρεψ̃

−
2,ze−iHt ψ̃+

1,x |0〉+

〈0| ψ̃−2,x eiHt ψ̃+
1,z+ρεψ̃

−
1,ze−iHt ψ̃+

2,x |0〉+

〈0| ψ̃−1,x eiHt ψ̃+
1,z+ρεψ̃

−
1,ze−iHt ψ̃+

1,x |0〉+

〈0| ψ̃−2,x eiHt ψ̃+
2,z+ρεψ̃

−
2,ze−iHt ψ̃+

2,x |0〉.



evolution of inhomogeneous initial state

lim
ε,δ→0,L→∞

< It |n(z)|It >λ=
1

4π2
[

1
((x − z)− t)2

+
1

((x − z)− t)2
] + (-18)

1
4π2

eZ (t)

(x − z)2 − t2

[
e2ipF (x−z)Qa(x , z, t) + e−2ipF (x−z)Qb(x , z, t)

]
,

where

Z (t) =

∫ ∞
0

dp
p
γ(p)(cos 2p(σ + 1)t − 1), γ(p) =

e4φ(p) − 1
2

(-19)

and

Qa = + exp
{∫ ι

0
dp

1
p

[(eip(x−z)+ip(σ(p)+1)t−0+(σ+1)p − eip(x−z)+ipt−0+p)

+ (eip(x−z)−ip(σ(p)+1)t−0+(σ+1)p − eip(x−z)−ipt−0+p)]
}

(-20)

Qb = + exp
{∫ ι

0
dp

1
p

[(e−ip(x−z)+ip(σ+1)t−0+(σ(p)+1)p − e−ip(x−z)+ipt−0+p)

+ (e−ip(x−z)−ip(σ(p)+1)t−0+(σ+1)p − e−ip(x−z)−ipt−0+p)]
}
. (-21)



If we replace σp with σ0 we have

1
(x − z)2 − t2

eQa =
1

(x − z)2 − (1 + σ0)2t2
, (-22)

For large t we have
exp Z (t) = O(t−γ(0)), (-23)



the bosonization formula

Certain two dimensional model can be described equivalently as a Bosonic model or
Fermionic model.

HB ∼ HF ;

HB = HF + 1/2[(Q1)2 + (Q2)2],

exact bosonization formula



The Bosonization formula

The exact Bosonization formula for the Fermionic fields are given by (Langmann,
Moosavi, J. Math. Phys. (2015), R. Heidenreich, R. Seiler, and D. A. Uhlenbrock, J.
Stat. Phys. (1980).)

ψω(x) = : lim
δ→0

NδeiπεωxQω/LR−εωω eiπεωxQω/L exp
{
εω
∑
p>0

2π
Lp

[ρω(p)e−ipx−δ|p|

− ρω(−p)eipx−δ|p|]
}
,

ψ†ω(x) = : lim
δ→0

Nδe−iπεωxQω/LRεωω e−iπεωxQω/L exp
{
− εω

∑
p>0

2π
Lp

[ρω(p)e−ipx−δ|p|

− ρω(−p)eipx−δ|p|]
}
,

ω, ω′ = 1, 2, ε1 = +, ε2 = −, Qω = ρω(0) and Nδ =

[
1

L(1−e−2πδ/L)

]1/2
is a numerical

constant depending on the regularization parameter δ; R±ω are the Klein factors such
that R−ω = (Rω)† = (R+

ω )†. [ρω(p),Rω′ ] = εωδω,ω′δp,0Rω



The loop groups,

Loop groups G = Map(S1
L ,G) are groups of continuous maps from a circle S1

L into
a certain compact Lie group G. consider the case G = U(1).

Let f a real valued function on the interval [−L/2, L/2] and eif a periodic function
on the same interval. Then the loop group G can be considered as the set of
periodic functions {eif } with pointwise production
(eif1 )(y) · (eif2 )(y) = ei(f1+f2)(y) = ei[f1(y)+f2(y)].

All these things are very well known and here are the basic references:

G. Segal, Commun. Math. Phys. 80, 301-342 (1981).

I. B. Frenkel and V. G. Kac, Invent. Math. 62, 23-66 (1980).

A. L. Carey and C. A. Hurst, Commun. Math. Phys. 98, 435-448 (1985).

A. L. Carey and S. N. M. Ruijsenaars, On fermion gauge groups, current algebras and
Kac-Moody algebras, Acta Appl. Math. 10, 1-86 (1987).

A. L. Carey and E. Langmann, Loop groups and quantum fields, Progress in Mathematics,
Vol. 205, (Birkhauser, 2002), pp. 45-94.



the loop groups

It is well known that G has an interesting central extension Ĝ = U(1)× G with the
group multiplication

(g1, φ1) · (g2, φ2) = (g1g2σ(φ1, φ2), φ1 · φ2), gi ∈ U(1), φi = eifi , (-24)

where
σ(φ1, φ2) = σ(eif1 , eif2 ) = e−iS(f1,f2)/2 (-25)

is a two cocycle of G and the explicit form of S(f1, f2) reads (G. Segal, CMP (1981).):

S(f1, f2) =
1

4π
[f1(L/2)f2(−L/2)− f1(−L/2)f2(L/2)]

+
1

4π

∫ L/2

−L/2
dx
[df1(x)

dx
f2(x)− f1(x)

df2(x)

dx

]
. (-26)



consider the projective representation of G = Map(S1
L ,G) with G = U(1) realized by a

unitary operator Γω(φ), ω = 1, 2 on the Fermi Fock space. We have

Γ(φ1)Γ(φ2) = σ(φ1, φ2)Γ(φ1 · φ2), and Γ(φ)∗ = Γ(φ∗). (-27)

We can choose the function f as:

f (y) = n
2π
L

y + α(y), y ∈ [−L/2, L/2], (-28)

where α(y) = α(y + L) is a periodic function and n ≡ [f (L/2)− f (−L/2)]/2π ∈ Z, is
called the winding number. so eif is periodic function;
We can decompose α(y) into Fourier modes

α(y) =
∑

p

2π
L
α̂(p)e−ipy (-29)

We can further decompose the Fourier modes as

α̂(p) = α̂+(p) + α̂−(p) + α̂(0). (-30)



The loop groups

For the periodic function eif chosen as above we can define the operators Γω(eif ) as:

Γω(eif )(y) ≡ eiεωα(0)Qω πL y R−εωω eiεωα(0)Qω πL y exp
{
εω
∑
p 6=0

2π
L
α(p)ρω(p)e−ipy},

(-31)
Then we define

ψ(y , δ) = Γω(eif )(y , δ)

≡ Nδeiεωα(0)Qω πL y R−εωω eiεωα(0)Qω πL y exp
{
εω
∑
p 6=0

2π
L
α(p)ρω(p)e−ipy−δp},

The Klein factors and the chiral charge factors can be expressed as the operators
realizing the projective representations as follows:

Rω := Γω(ei 2π
L y ) and eiα̂(0)Qω := Γω(eiα̂(0)). (-32)

We have the following commutation relation for the Klein factors and the charge
operators.

R−1
ω Qω′Rω = Qω′ + Iδωω′ , (-33)

where I is the identity operator.



The proof; G. Segal, CMP (1981); A. L. Carey and C. A. Hurst, CMP(1985).

Proof.

We consider only the nontrivial case such that ω = ω′ and we forget this index in the
rest of this section. Since α̂(0) is a real number, the set of operators eiα̂(0)Qω forms a
one parameter group with the parameter α̂(0) and we have:

iR−1QR =
d

dα̂(0)
[R−1eiα̂(0)QR]|α̂(0)=0. (-34)

On the other hand we have

R−1eiα̂(0)QR = Γ(e−i 2π
L y )Γ(eiα̂(0))Γ(ei 2π

L y )

= e−iS(− 2π
L y, α̂(0))/2Γ(e−i 2π

L y+iα̂(0))Γ(ei 2π
L y )

= e−iS(− 2π
L y, α̂(0))/2e−iS(− 2π

L y+α̂(0), 2π
L y)/2Γ(e−i 2π

L y+iα̂(0)+i 2π
L y ). (-35)

Using the explicit formula for the cocycle (-26) we have

e−iS(− 2π
L y, α̂(0))/2 = eiα̂(0))/2, e−iS(− 2π

L y+α̂(0), 2π
L y)/2 = eiα̂(0))/2 (-36)

So we have

d
dα̂(0)

[R−1eiα̂(0)QR]|α̂(0)=0 =
d

dα̂(0)
[eiα̂(0)Qeiα̂(0)]|α̂(0)=0 = i(Q + I). (-37)

So we proved this theorem.

Similarly we have
R−n
ω Qω′R

n
ω = Qω′ + nIδωω′ , (-38)

where n ∈ Z is the winding number.


